The \texttt{apxproof} package

Pierre Senellart
pierre@senellart.com
http://github.com/PierreSenellart/apxproof

2021/06/23 v1.2.2

Abstract
This package makes it easier to write articles where proofs and other material are deferred to the appendix. The appendix material is written in the L\textsc{a}T\textsc{e}X code along with the main text which it naturally complements, and it is automatically deferred. The package can automatically send proofs to the appendix, can repeat in the appendix the theorem environments stated in the main text, can section the appendix automatically based on the sectioning of the main text, and supports a separate bibliography for the appendix material.

1 Usage

The \texttt{apxproof} package is intended to simplify the writing of articles where some of the content needs to be deferred to an appendix. This is in particular useful for the submission of scientific articles to conferences or journals that limit the number of pages in the main text but allow an extra appendix, where proofs of theorems and other material can be added.

1.1 Basics

To use \texttt{apxproof}, first load it in the header of your document:

\begin{verbatim}
\usepackage{apxproof}
\end{verbatim}

On its own, this does not do anything and should not change the appearance of your document. To add an appendix with some material from your document, use the \texttt{toappendix} environment:

\begin{verbatim}
\begin{toappendix}
...
\end{toappendix}
\end{verbatim}

The content will appear at the end of your document, in an automatically generated section that refers to the current section in the main text.
Example 1. Throughout this documentation, all examples produce content deferred to the appendix, at the very end of this document.

\begin{toappendix}
This content is in the appendix.
\end{toappendix}

When the content to put in appendix is an entire section, make sure that \texttt{section} is the very first command that appears within the \texttt{toappendix} environment. It will disable the automatic production of a section heading.

1.2 Repeated Theorems and Proofs

In some scientific papers that include proofs, it is common to defer proofs to the appendix. This can easily be achieved using the \texttt{appendixproof} environment:

\begin{appendixproof}
appendixproof
\end{appendixproof}

This behaves like the \texttt{toappendix} environment, except that a proof environment is generated.

Example 2. We now send a proof to the appendix:

\begin{appendixproof}
appendixproof
\end{appendixproof}

When deferring proofs to the appendix, an annoying problem is that the statement of the theorem remains in the main text; it is hard to read a proof that is far away from the statement it proves. \texttt{apxproof} solves this issue by allowing statements of theorems to be \texttt{repeated}: once in the main text, and once in the appendix before the proof of the statement. To use this feature, you can define a new \texttt{repeated theorem} environment using the \texttt{newtheoremrep} command:

\begin{newtheoremrep}{\langle name\rangle}{\langle counter\rangle}{\langle title\rangle}{\langle countersec\rangle}

Usage is exactly the same as that of AMS \LaTeX’s \texttt{newtheorem} macro:

- \texttt{\langle name\rangle} (e.g., \texttt{theorem}) is the name of an environment that is created for this kind of theorem;
- \texttt{\langle counter\rangle} (e.g., \texttt{definition}) is an optional counter describing from which kind of environment the numbering of these environments should be inherited;
- \texttt{\langle title\rangle} (e.g., \texttt{Theorem}) is the title that will be used to display this theorem environment;
• \langle countersec \rangle (e.g., section) is an optional counter of a sectioning command indicating that counters for this theorem should be prefixed by this counter (and reset at each occurrence of the sectioning command).

(counter) and \langle countersec \rangle should not be used together. What differs from \texttt{newtheorem} is that, when the following is written:

\begin{verbatim}
\newtheoremmrep{foobar}{Foobar}
\end{verbatim}

then two environments are defined: the \texttt{foobar} environment, which behaves as if \texttt{newtheorem} had been used, and the \texttt{foobarrep} environment, which results in the statement of this environment being repeated in the appendix.

One interesting feature of \texttt{apxproof} is that in most situations, there is no need to use the \texttt{appendixproof} environment. Indeed, the \texttt{proof} environment is redefined by \texttt{apxproof} to automatically put the proof either in the main text (if it follows a regular theorem) or in the appendix (if it follows a repeated theorem).

Example 3. Assume we have first defined a repeated theorem environment \texttt{foobar} as above. We can now use this theorem environment, first for a regular theorem in the main text, then for a theorem repeated in the main text and in the appendix:

\begin{verbatim}
\begin{proof}
This foobar is a regular one, in the main text.
\end{proof}
\begin{proof}
This is the proof of the regular foobar.
\end{proof}
\begin{foobarrep}
This foobar is repeated in the appendix.
\end{foobarrep}
\begin{proof}
This is the proof of the repeated foobar.
\end{proof}
\end{verbatim}

We obtain:

Foobar 1. This foobar is a regular one, in the main text.

Proof. This is the proof of the regular foobar.

Now, if we use a repeated theorem:

\begin{verbatim}
\begin{proof}
This foobar is a regular one, in the main text.
\end{proof}
\begin{proof}
This is the proof of the regular foobar.
\end{proof}
\begin{foobarrep}
This foobar is repeated in the appendix.
\end{foobarrep}
\begin{proof}
This is the proof of the repeated foobar.
\end{proof}
\end{verbatim}

We now obtain:

Foobar 2. This foobar is repeated in the appendix.

Note that, since \texttt{hyperref} is loaded, there are hyperlinks created between the statements of the theorems in the main text and in the appendix.
When the proof is deferred to the appendix, it is common practice to add a proof sketch in the main text. \texttt{apxproof} defines a simple \texttt{proofsketch} environment for this purpose:

\begin{proofsketch}
\end{proofsketch}

The proof sketch is typeset similarly to a proof, but is always in the main text. Similarly, an \texttt{inlineproof} environment is provided so as to be able to have both a proof in the appendix (using the regular \texttt{proof} environment, or alternatively the \texttt{appendixproof} environment) and a different proof in the main text (using the \texttt{inlineproof} environment).

\textbf{Example 4.} \textit{Here are simple examples of proof sketches and inline proofs:}

\begin{proofsketch}
This is a proof sketch.
\end{proofsketch}

\begin{inlineproof}
This is an inline proof.
\end{inlineproof}

\begin{proof}
This is an inline proof.
\end{proof}

\subsection{Bibliography}

By default, \texttt{apxproof} automatically adds a bibliography in the appendix with only the references cited in the appendix material. This allows for a clean separation of references used solely in the main text, and those used in the appendix.

\textbf{Example 5.} \textit{Assume we have citations both in the main text and in the appendix.}

This is a citation in the main text--\cite{lamport86}.
\begin{toappendix}
This is a citation in the appendix--\cite{proofsAreHard}.
\end{toappendix}

This is a citation in the main text [1].

The bibliography in the appendix can use a different style and heading than the bibliography in the main text (and, by default, it does). See Section 1.5 for how to configure the appearance of that bibliography.

In order to use a single appendix for the main text and the bibliography, one can specify the value \texttt{common} to the \texttt{bibliography} option when loading the package. (By default this option is set to \texttt{separate}.)
1.4 Mode

An optional \langle mode \rangle can be specified when loading the package:
\usepackage[appendix=\langle mode \rangle]{apxproof}

\langle mode \rangle can take one of the following three values:

- \texttt{append} This is the default. Appendix material gathered by apxproof is appended to the main text.
- \texttt{inline} In this mode, apxproof simply inlines the content along with the main text.
- \texttt{strip} This mode functions similarly to \texttt{append} except that the appendix is not appended at the end of the document. All appendix material is therefore removed.

1.5 Customization

apxproof provides a few macros that can be redefined (using \texttt{\renewcommand}) to customize the appearance of the appendix:

- \texttt{\mainbodyrepeatedtheorem} \mainbodyrepeatedtheorem is a macro that is executed at the beginning of the body of every repeated theorem. This can be used to notify the reader that the theorem is repeated in appendix in some way, e.g., with a margin note.

- \texttt{\appendixsectionformat{\langle number \rangle\{title\}}} \appendixsectionformat\langle number \rangle\{title\} is a macro that indicates how to format the section titles in the Appendix, given the number and title of the section in the main text. By default, they appear as “Proofs for Section \langle number \rangle ((title))”.

- \texttt{\appendixrefname} \appendixrefname contains the heading that is displayed before the bibliography. By default, this is “References for the Appendix”. (Note that this command is also defined and used by the memoir document class.)

- \texttt{\appendixbibliographystyle} \appendixbibliographystyle contains the .bst bibliography style that is used in the bibliography in appendix. By default, this is alpha.

- \texttt{\appendixbibliographyprelim} \appendixbibliographyprelim contains arbitrary code that is executed just before the production of the bibliography in appendix, which can be used to configure the way it is displayed.

- \texttt{\appendixprelim} \appendixprelim contains arbitrary code that is executed just before the production of the appendix, which can be used to configure the way it is displayed. By default, this command contains \texttt{\clearpage\onecolumn} (the appendix is typeset on a new page in single-column mode) but redefining this option allows changing this behavior.
Another customization capability concerns *numbered equations* that are present within repeated theorems. An optional \texttt{repeqn} option can be specified when loading the package, which controls whether equation numbers should be as in the main text (by setting this option to \texttt{same}, the default) or independently numbered (by setting this option to \texttt{independent}). In the latter case, whenever a referenceable counter is set with \texttt{\label{(counter)}, \ref{(counter)}} references the counter in the main text, while \texttt{\ref{(counter)-apx}} references the counter in the appendix (except in \texttt{inline} mode, where both have the same effect).

1.6 Advanced Features

We now describe a few advanced macros and environments, the usage of which is limited to special cases:

- \texttt{\textbackslash nestedproof} \texttt{\textbackslash nestedproof} is an environment that can be used within a \texttt{proof} environment deferred in the appendix; this is required because, for technical reasons, no \texttt{proof} environment can be nested within a deferred \texttt{proof} environment.

- \texttt{\textbackslash noproofinappendix} \texttt{\textbackslash noproofinappendix} can be used inside repeated theorems that are not followed by a \texttt{proof} or \texttt{appendixproof} environment; the point is to ensure that a further \texttt{proof} environment cannot be mistakenly understood as a proof of the repeated theorem. It should not be needed in most situations as \texttt{apxproof} tries figuring out when a proof follows a repeated theorem automatically, but may occasionally be needed in complex scenarios.

- \texttt{\textbackslash nosectionappendix} \texttt{\textbackslash nosectionappendix} is to be used inside a section that \texttt{does} contain appendix material, but for which a section in the appendix should not be created. This should be rarely needed. When this command is present, appendix material is appended to the end of the previously created section.

2 Supported Document Classes

Because \texttt{apxproof} modifies sectioning commands, bibliographies, and proofs, it may not work straight away with arbitrary document classes. It has currently been tested with and is supported for the following document classes:

- \LaTeX\ standard document classes (e.g., \texttt{article.cls})
- KOMA-Script (e.g., \texttt{scrartcl.cls, scrbook.cls})
- \texttt{memoir.cls}
- ACM SIG Proceedings (e.g., \texttt{sig-alternate.cls, acmart.cls})
- Springer’s Lecture Notes in Computer Science (e.g., \texttt{llncs.cls})
- Schloß Dagstuhl’s Leibniz International Proceedings in Informatics (e.g., \texttt{lipics.cls, lipcs-v2016.cls})

Other classes may work out of the box. Adding support for specific classes is possible and can be requested from the author of this package.
3 Known Issues and Limitations

We report here some issues we are currently aware of:

- When using `hyperref`, the appendix in the bibliography is not hyperlinked. This is to avoid possible issues with multiply defined bibliography entries.

- `appendixproof`, `proof`, `toappendix` environments cannot be nested. This is a limitation of the `fancyverb` package that `apxproof` relies on. Note the existence of the `nestedproof` environment for nested proofs.

- `apxproof` poorly interacts with `SyncTeX`: identifying which source line has produced which box does not work for appendix content managed by `apxproof` or repeated theorems. No obvious fix is known, though this issue will be investigated in the long term.

- Unless the `bibliography` option is set to `common`, the `bibunits` package is used to generate a second bibliography. This means any package, such as `biblatex`, that is incompatible with `bibunits` will not be compatible with `apxproof` unless `bibliography` is set to `common`.

Issues not listed here should be reported to the author.

4 License

Copyright © 2016–2021 by Pierre Senellart.

This work may be distributed and/or modified under the conditions of the LATEX Project Public License, either version 1.3 of this license or (at your option) any later version. The latest version of this license is in `http://www.latex-project.org/lppl.txt` and version 1.3 or later is part of all distributions of LATEX version 2005/12/01 or later.

5 Contact

- `https://github.com/PierreSenellart/apxproof`

- Pierre Senellart <pierre@senellart.com>

Bug reports and feature requests should preferably be submitted through the Issues feature of GitHub.

6 Acknowledgments

Thanks to Antoine Amarilli for feedback and proofreading. Thanks to K. D. Bauer for the implementation of the forward-linking mechanism, and for various bugfixes.
7 Implementation

We now describe the entire code of the package, in a literate programming fashion. Throughout the package, we use the \texttt{axp@} prefix to identify local macros and environment names, which are not meant to be used by the final user.

7.1 Dependencies

We first load a few package dependencies:

- \texttt{environ} to easily define the repeated theorem environments.
 \begin{verbatim}
 \RequirePackage{environ}
 \end{verbatim}

- \texttt{etoolbox} to define simple toggles.
 \begin{verbatim}
 \RequirePackage{etoolbox}
 \end{verbatim}

- \texttt{fancyvrb} for the bulk of the work of exporting appendix material in an auxiliary file.
 \begin{verbatim}
 \RequirePackage{fancyvrb}
 \end{verbatim}

- \texttt{ifthen} for easier comparison of character strings.
 \begin{verbatim}
 \RequirePackage{ifthen}
 \end{verbatim}

- \texttt{kvoptions} to manage options passed to the package.
 \begin{verbatim}
 \RequirePackage{kvoptions}
 \end{verbatim}

- \texttt{catchfile} to be able to check the content of files \texttt{\input} within appendix content.
 \begin{verbatim}
 \RequirePackage{catchfile}
 \end{verbatim}

- \texttt{amsthm} for its \texttt{\newtheorem} macro. Some document classes (e.g., \texttt{lipics}) preload \texttt{amsthm}: this is fine, \texttt{\RequirePackage{amsthm}} will simply have no effect. On the other hand, some other document classes (e.g., \texttt{llncs} or \texttt{sig-alternate}) define a \texttt{proof} environment that conflicts with \texttt{amsthm}, so we have to undefine this environment before loading \texttt{amsthm}. In that case, we reestablish the existing proof environments, in case they had been customized (e.g., \texttt{sig-alternate})
 \begin{verbatim}
 \@ifpackageloaded{amsthm}\{
 \}
 \let\apx@oldamsthmproof\proof
 \let\apx@oldamsthmendproof\endproof
 \let\proof\undefined
 \let\endproof\undefined
 \}
 \RequirePackage{amsthm}
 \ifdefined\apx@oldamsthmproof
 \end{verbatim}
7.2 Option Processing

Many names throughout the package use an arobase (\@) to avoid name conflict with user-defined names. To simplify the compilation of the documentation, we simply make it a regular character in all the rest.

We setup the processing of options using keyval facilities.

We declare the following options:

- **appendix**, with a default value of `append` (other possible values: `strip`, `inline`);
- **bibliography**, with a default value of `separate` (other possible value: `common`);
- **repeqn**, with a default value of `same` (other possible value: `independent`).

We check that the value of the options are valid, and add a message to the compilation log.
The external bibunits package is used to add a second bibliography for the appendix material.

\RequirePackage{bibunits}
\message{apxproof: Separate bibliography for appendix material}
\message{apxproof: Common bibliography for appendix and main text}
\message{Error: unsupported option bibliography=\axp@bibliography\ for package apxproof}
\message{apxproof: Repeated equations keep the same numbering}
\message{apxproof: Repeated equations are independently numbered}
\message{Error: unsupported option repeqn=\axp@repeqn\ for package apxproof}

7.3 Macros Common to All Compilation Modes

Common to all compilation modes, we define \axp@newtheorem. When called with first argument foobar, we first undefine the existing foobar environment (and its counter) if it has already been defined (e.g., by the document class), then invoke \axp@newtheorem for the regular version of the theorem foobar, saving and restoring any existing theorem counter unless the \newtheoremdep redefines the base counter.

\def\axp@newtheorem#1#2#3#4{\expandafter\let\csname #1\endcsname\undefined
\ifcsname c@#1\endcsname
\expandafter\expandafter\expandafter\let\expandafter\expandafter
\csname c@axp@#1\endcsname\csname c@#1\endcsname
\expandafter\let\csname c@#1\endcsname\undefined
\fi
\axp@newtheorem{#1}{#2}{#3}{#4}
\ifcsname c@axp@#1\endcsname
\ifx\relax#2\relax\expandafter\expandafter\expandafter\let\expandafter\expandafter
\csname c@#1\endcsname\csname c@axp@#1\endcsname
\else\fi
\fi
\}

We introduce an intermediate \axp@newtheorem command to define a new theorem, differently depending on whether there is a section counter or not. This will be useful, in particular to allow changing this definition depending on the document class. This command uses two intermediary commands, \@axp@newtheorem and \@@axp@newtheorem.
We define the high-level \newtheoremrep to have the same syntax as amsthm's \newtheorem. For this purpose, we need a little trick to deal with the second and fourth optional arguments, which is what \@oparg and \axp@newtheoremreptmp are used for. \axp@newtheoremrep is defined differently depending on the compilation mode.

\newcommand\newtheoremrep[1]{\@oparg{\axp@newtheoremreptmp{#1}}}
\newcommand\axp@newtheoremreptmp[#1][#2][#3][#4]{\@oparg{\axp@newtheoremrep[#1][#2][#3][#4]}}

proofsketch Simple proofsketch environment.
\newenvironment{proofsketch}{\begin{axp@oldproof}[Proof sketch]}{\end{axp@oldproof}}

mainbodyrepeatedtheorem We provide sensible defaults for these user-customizable macros. Even though they are not all useful in all modes, we define them for all modes so that a \renewcommand works in all cases.
\newcommand\mainbodyrepeatedtheorem{}
\providecommand{\appendixrefname}{References for the Appendix}
\setcounter{section}{0}
\appendixbibliographystyle{alpha}
\appendixbibliographyprelim{}
\appendixprelim{}
\appendixsectionformat[#1][#2]{Proofs for Section~#1 \ (#2)}

axp@oldproof We save the definition of the existing proof environment.
\let\axp@oldproof\proof
\let\endaxp@oldproof\endproof

We define a utility macro that will be used to properly set the \label command (and its amsmath counterpart, \labelin@display) for equations within repeated theorems, depending on the compilation mode.
\newcommand\axp@redefinelabels{}
7.3.1 Class-Specific Behavior

Finally, some class-specific behavior common to all compilation modes.

\llncs and other Springer document classes

\providecommand\label@in@display{}
\ifthenelse{\equal{\axp@appendix}{inline}}{
\let\axp@oldlabel\label
\let\axp@oldlabel@in@display\label@in@display
\renewcommand\label[1]{\axp@oldlabel{##1} \axp@oldlabel{##1-apx}}
\renewcommand\label@in@display[1]{\axp@oldlabel@in@display{##1} \axp@oldlabel{##1-apx}}
}{
\let\axp@oldlabel\label
\let\axp@oldlabel@in@display\label@in@display
\renewcommand\label[1]{\axp@oldlabel{##1-apx}}
\renewcommand\label@in@display[1]{\axp@oldlabel@in@display{##1-apx}}
}\}

\begin{axp@oldproof}
\begin{proofsketch}
\end{proofsketch}
\end{axp@oldproof}

It is necessary to use \spnewtheorem instead of \newtheorem in Springer document classes to obtain standard formatting.

\def\@axp@newtheorem#1#2#3#4{}
\def\@@axp@newtheorem#1#2{
\spnewtheorem*{#1}{#2}{\upshape\bfseries}{\itshape}
}

We redefine the proofsketch environment, which is used differently in the base class.

\renewenvironment{proofsketch}{\begin{axp@oldproof}[sketch]}{\end{axp@oldproof}}
We have to redefine the macro `\@thmcountersep` for proper sectioned counters.
\begin{verbatim}
def\@thmcountersep{.}
\fi
\end{verbatim}

7.4 Inline Compilation Mode
\begin{verbatim}
\ifthenelse{\equal{\axp@appendix}{inline}}{
\axp@newtheoremrep
In inline mode, \axp@newtheoremrep uses \axp@newtheoremrep@definetheorem
to define the regular theorem environment and creates a repeated theorem environment that behaves exactly as the regular theorem environment, while calling \axp@redefinelabels to make sure that \texttt{-axp} variants of equation counters are defined.
\begin{verbatim}
def\axp@newtheoremrep#1[#2]#3[#4]{%
\axp@newtheoremrep@definetheorem{#1}{#2}{#3}{#4}%
\NewEnviron{#1rep}[1][2]{%
\ifx\relax##1\relax
\begin{#1}\axp@redefinelabels\BODY\end{#1}%
\else
\begin{#1}[##1]\axp@redefinelabels\BODY\end{#1}%
\fi
\}
\end{verbatim}
\end{verbatim}

\texttt{inlineproof} \texttt{nestedproof} \texttt{appendixproof}
In inline mode, these environments behave like the regular \texttt{proof} environment.
\begin{verbatim}
\let\inlineproof\proof
\let\endinlineproof\endproof
\let\nestedproof\proof
\let\endnestedproof\endproof
\let\appendixproof\proof
\let\endappendixproof\endproof
\end{verbatim}

\texttt{toappendix} \texttt{noproofinappendix} \texttt{nosectionappendix}
In inline mode, this environment and these macros are no-ops.
\begin{verbatim}
\newenvironment{toappendix}{}{}
\let\noproofinappendix\relax
\let\nosectionappendix\relax
\end{verbatim}

7.5 Append or Strip Compilation Modes
\begin{verbatim}
\end{verbatim}
We now deal with the case where \texttt{apxproof} really does something useful: either append the appendix material to the document, or strip it entirely.

7.5.1 Auxiliary File for the Appendix
\begin{verbatim}
\axp@proofsfile
We open a new auxiliary file, with extension \texttt{.axp}, where the appendix material will be dumped.
\end{verbatim}
At the beginning of this file, we make @ a regular character (since it will be used in several places for internal names) and reestablish the original definition of the \texttt{proof} environment and the \texttt{section} macro.

\begin{verbatim}
\begin{VerbatimOut}
\end{VerbatimOut}
\end{verbatim}

We need an auxiliary macro to disable active characters that have the high bit set when writing to the .axp file. See https://tex.stackexchange.com/a/145361/166858

\begin{verbatim}
\begin{VerbatimOut}
\end{VerbatimOut}
\end{verbatim}

Using the functionalities of the \texttt{fancyvrb} package, we define a custom verbatim environment \texttt{axp@VerbatimOut} that writes every line to the \texttt{axp@proofsfile}. We also use the previous macro to disable active characters with the eighth bit set, and we make sure the catcode of @ is reset for every verbatim environment, in case it is used by the user (e.g., as in the xypic package). Finally, as an additional precaution, we reset \texttt{FV@CatCodesHook} that is for example set by the commandchars or commentchar option of \texttt{fvset}.

\begin{verbatim}
\begin{VerbatimOut}
\end{VerbatimOut}
\end{verbatim}
The entire content of this environment is put in appendix, starting a new appendix section beforehand if needed.

\newenvironment{toappendix}{\axp@writesection\axp@VerbatimOut}{\endaxp@VerbatimOut}

7.5.2 Definition of New Theorems

axp@seenreptheorem Used to indicate whether a repeated theorem was just typeset, without its proof.
\newtoggle{axp@seenreptheorem}

axp@rpcounter Sequentially incremented for every repeated theorem, used to create labels.
\newcounter{axp@rpcounter}

axp@equation Used to save the value of the equation counter, when repeqn is set to same.
axp@equationx \newcounter{axp@equation}
\newcounter{axp@equationx}

axp@newtheoremrep With first argument foobar, we use \axp@newtheoremrep@definetheorem to define the regular version of the theorem foobar. We then patch \begin{foobar} so as not to expect a proof in the appendix and define an internal theorem axp@foobarrp that will be used in the appendix to restate the existing theorem.

\def\axp@newtheoremrep#1[#2]#3[#4]{% \axp@newtheoremrep@definetheorem{#1}{#2}{#3}{#4}% \expandafter\pretocmd\csname #1\endcsname{\noproofinappendix}{}{}% \axp@newtheorem*{axp@#1rp}{#3}% \axp@forward@setup{#1}{#2}{#3}{#4}%

We then define a foobarrp environment that increments the axp@rpcounter and typeset the regular foobar theorem with a label derived from the counter, along with a possible custom command to identify repeated theorems. We distinguish the case when the theorem argument has a note and when it does not. We save the equation counter before typesetting the theorem environment, to reset it to the same value in the repeated environment when repeqn is set to same.

\NewEnviron{#1rep}[1][{}]{% \ifthenelse{\equal{\axp@repeqn}{same}}{% \setcounter{axp@equation}{\value{equation}}% \addtocounter{axp@equationx}{1}% \axp@with@forward{#1}{\begin{#1}}\label{axp@r\roman{axp@rpcounter}}% \else \axp@with@forward{#1}{\begin{#1}[##1]}\label{axp@r\roman{axp@rpcounter}}% \fi %} \BODY\end{#1}%
We set the `axp@seenreptheorem` toggle to indicate that we are looking for the proof of the theorem, then store in a macro the content of the theorem’s body.

```
\global\toggletrue{axp@seenreptheorem}%
\global\expandafter\let\csname rplet\roman{axp@rpcounter}\endcsname\BODY
```

Possibly after starting a new appendix section if needed, we typeset a repeated version of the theorem using the `axp@foobarrp` environment and a reference to the previously defined label. We use `\axp@redefinelabels` in this environment to avoid multiply defined labels. We have to deal in a careful way with theorem notes: we want to use a theorem note to display the number of the repeated theorem, but theorem notes are usually typeset in a much different way (different font, parentheses) than theorem headings. In the case of the Springer document classes, we use the `\theopargself` macro to disable parentheses. For other document classes, we need to manually patch the `\thmhead` command at the right time. We also specially cover the case of the ACM document class where `\@acmplainnotefont` is used instead of `\thm@notefont`.

```
\axp@writesection%
\immediate\write\axp@proofsfile{\noexpand\makeatletter}
\ifthenelse{\equal{\axp@repeqn}{same}}{\immediate\write\axp@proofsfile{\noexpand\setcounter{axp@equationx}{\value{equation}}\noexpand\setcounter{equation}{\theaxp@equation}}}{%}
\immediate\write\axp@proofsfile{{\ifdefined\theopargself\noexpand\theopargself\else\ifdefined\@acmplainnotefont\noexpand\@acmplainnotefont\else\ifdefined\thm@notefont\noexpand\the\thm@notefont\noexpand\fi\fi\fi}}}
\noexpand\begin{axp@#1rp}
[%
\noexpand\ref{axp@r\roman{axp@rpcounter}}%
\\iftfnotempty{##1}{%
\\iftfdefined\theopargself\noexpand\the\acmplainnotefont
\\else
\\iftfdefined\acmplainnotefont
\\noexpand\acmplainnotefont
\\else
\\noexpand\ifdefined\noexpand\thm@notefont
\\noexpand\thm@notefont
\\noexpand\fi
\\noexpand\fi
\fi
```
When hyperref is loaded, \texttt{foobarrep} environments in the main text have their number link to their repetition in the appendix.

In order to make the number of the \texttt{foobarrep} theorem a link to its repeated version, we temporarily redefine the \texttt{thefoobar} command, or, if we inherited the counter from a \texttt{bazbar} environment, the \texttt{thebazbar} command. This seems to be the only robust way, to make the number a \texttt{hyperlink}, without adding extensive dependence on internals of \texttt{amsthm}, the built-in \texttt{newtheorem} and possibly document-class specific definitions.

In order to allow users to redefine \texttt{thefoobar} without breaking this feature, we redefine \texttt{thefoobar} only for the duration of the \texttt{\begin{foobar}} form, resetting it to the old value as soon as possible.

Redefining \texttt{thefoobar} has the side effect of changing \texttt{newlabel} entries in the \texttt{.aux} file, so we need to do to be able to disable addition of the hyperlink, which is why we use an intermediate \texttt{axp@forward@link\{\texttt{target}\}\{\texttt{text}\}} macro. We also redefine \texttt{theHfoobar} which is used by hyperref but not defined if hyperref was loaded after \texttt{newtheoremrep} was used, and \texttt{protect} it to output it verbatim into the \texttt{.aux} file.

These hyperlinks are of course disabled in the \texttt{strip} compilation mode.
\axpforward@link Dummy macro, for handling the unwanted change of the \newlabel entry in the \.aux file caused by changing the definition of \thefoobar.

\axpforward Provides the needed \hypertarget. Intended to be written to the \.axp file.

\axpforward@setup In order to support counter inheritance with the first optional argument of \newtheoremrep, we need access to the name of the counter. For compliance with the behavior of \@axp@newtheorem, the first optional argument (\#2) is ignored if the second optional argument (\#4) is given.

7.5.4 Proof Environments

\noproofinappendix Utility macro that toggles axp@seenreptheorem to false.
We dump the content of this in appendix, within an original proof environment, possibly after creating a new appendix section.

\newenvironment{appendixproof}
\{"%\axp@writesection\immediate\write\axp@proofsfile{%\noexpand\makeatletter\noexpand\begin{axp@oldproof}\noexpand\makeatother%\}\%\axp@VerbatimOut\}
\axp@VerbatimOut\}\immediate\write\axp@proofsfile{%\noexpand\end{axp@oldproof}\\noexpand\noproofinappendix\\}
\proof This environment either puts the proof in appendix, if we are after a repeated theorem without its proof, or inlines it otherwise.
\renewenvironment{proof}
\{"\iftoggle{axp@seenrepthm}{%\appendixproof}{%\axp@oldproof}%\}%\axp@VerbatimOut\}\immediate\write\axp@proofsfile{%\noexpand\end{axp@oldproof}\\}
\let\inlineproof\axp@oldproof
\let\endinlineproof\endaxp@oldproof
\let\nestedproof\axp@oldproof
\let\endnestedproof\endaxp@oldproof

7.5.5 Section Management

axp@seccounter Sequentially incremented for every section, used to create labels.
\newcounter{axp@seccounter}
\axp@sectitle Saves the title of the last encountered section.
\def\axp@sectitle{\}
This command \axp@section behaves similarly to \axp@oldsection, except that it first tests whether a \section follows, and if so, does not produce anything. This is useful to avoid producing empty sections in the appendix. Using the catchfile package, we also check whether a \section is within an \input that immediately follows.

\def\axp@section#1{%
 \@ifnextchar\input
 {\axp@@sectiontestinput{#1}}%
 {\axp@@sectiontestsection{#1}}%
}%

\def\axp@@sectiontestinput#1\input#2{%
 \CatchFileDef{\axp@tmp}{#2}{}%
 \def\axp@tmptmp{\axp@@sectiontestsection{#1}}%
 \expandafter\axp@tmptmp\axp@tmp%
}%

\def\axp@@sectiontestsection#1{\@ifnextchar\section{\makeatother}{\axp@oldsection{#1}\makeatother}}

We redefine the \section command to create a label based on axp@seccounter and to store its title in axp@sectitle. In order to support starred and unstarred versions, as well as the optional short-title argument, the intermediate macros \@section and @@section are needed.

\let\axp@oldsection\section
\def\section{\@ifstar\@section@@section}

\newcommand{\@section}[2][\relax]{%axp@@section{}{#1}{#2}}%
\newcommand{\@@section}[2][\relax]{%axp@@section{}{#1}{#2}}%
\newcommand{\axp@@section}[3]{%
 \global\def\axp@sectitle{#3}%
 \ifx\relax#2\relax%
 \axp@oldsection#1{#3}%
 \else%
 \axp@oldsection#1[{{#2}}]{#3}%
 \fi%
 \addtocounter{axp@seccounter}{1}%
 \label{axp@s\roman{axp@seccounter}}%
}%

\newcommand{\nosectionappendix}{%
 \global\def\axp@sectitle{}%
}%

\axp@writesection If \axp@sectitle is not empty, we create a new section in the appendix, referring to the main text section.

Here, we wrap \ref{axp@si} into \axp@protectref@i, in order to protect the label name from wrongly being converted to uppercase, e.g., in fancyhdr with \pagestyle{fancy}.
This macro is defined both in the .aux file (in order to ensure availability when typesetting the \tableofcontents), and immediately before typesetting the appendix section (to ensure availability in the \section command).

\newcommand\axp@writesection{%
\ifx\axp@sectitle\@empty
 \edef\axp@tmp{%
 \noexpand\global\noexpand\def
 \expandonce{\csname axp@protectref@\roman{axp@seccounter}\endcsname}{%}
 \noexpand\ref{axp@s\roman{axp@seccounter}}%
 }%
 \immediate\write\@auxout{\expandonce\axp@tmp}
 \immediate\write\axp@proofsfile{\expandonce\axp@tmp^^J%
 \noexpand\axp@section{\noexpand\appendixsectionformat{\protect
 \expandonce{\csname axp@protectref@\roman{axp@seccounter}\endcsname}%;
 \expandonce{\csname axp@protectref@\roman{axp@seccounter}\endcsname}%;
 }{\expandonce{\axp@sectitle}}%}
 \nosectionappendix
}\else
}\fi

Finally, in a somewhat ad hoc manner, we disable the whole section management for \tableofcontents, which may be typeset using a section heading, but for which automatic section management does not make sense.

\axp@oldtableofcontents
\tableofcontents
\let\axp@oldtableofcontents\tableofcontents
\def\tableofcontents{{\let\section\axp@oldsection\axp@oldtableofcontents}}

7.5.6 Append Compilation Mode

\axp@oldbibliography
\bibliography
\let\axp@oldbibliography\bibliography
\renewcommand\bibliography{#1}{%}
\defaultbibliography{#1}%;
\axp@oldbibliography{#1}%;
}

Unless the bibliography option is set to \texttt{common}, we need to set the appendix bibliography source to be the same as that of the main text, thanks to \texttt{bibunits}'s \defaultbibliography macro.
After the end of the main text, we add the appendix (after the command \appendixprelim is issued) within a bibliunit environment so as to typeset a separate bibliography for the appendix (unless the bibliography option is set to common). This is done using \pretocmd on \enddocumenthook instead of \AtEndDocument because we want the code to be run before any code in the \enddocumenthook that has been set in the document class, as in the amsart document class. There is an extra test to ensure an empty bibliography environment is not produced. The name of the bibliography is changed to \appendixrefname; in most document classes, it is called \refname but it is occasionally (scraartcl, sccreprtr) called \bibname. An ad-hoc test is added to fix a conflict with the natbib package which redefines \bibcite at the end of the document.

```latex
\pretocmd{\@enddocumenthook}{% 
  \ifdefined\NAT@testdef
    \renewcommand{\bibcite}[2]{% 
      \global@namedef{b@#1\@extra@binfo}{#2}%
    }%
  \fi
  \appendixprelim
  \appendix
  \ifthenelse{\equal{\axp@bibliography}{separate}}{%
    \begin{bibunit}[\appendixbibliographystyle]
    \immediate\closeout\axp@proofsfile
    \input{\jobname.axp}
    \ifdefined\NAT@testdef
      \let\bibcite\NAT@testdef
    \fi
  }{}%
}{%}
}\appendixbibliographyprelim
```

7.5.7 Class-Specific Behavior

We conclude with some class-specific behavior.

ACM Document Classes (old versions, till 2017)
We first redefine the `proofsketch` environment, which is used differently in the base class.

```latex
\renewenvironment{proofsketch}{\begin{axp@oldproof}[\textit{sketch}]\end{axp@oldproof}}
```

We adjust the styling of theorems for the needs of `apxproof`.

```latex
\newtheoremstyle{mystyle}{6pt}{6pt}{\itshape}{10pt}{\scshape}{.5em}{.}{.}
\theoremstyle{mystyle}
```

The section title of the bibliography is in uppercase in these document classes. In addition, the `\thebibliography` macro hard-codes twice the section title, so we un-hardcode it so that it can be modified in the appendix.

```latex
\patchcmd{\thebibliography}{References}{\protect\refname}{}{}
\patchcmd{\thebibliography}{References}{\protect\refname}{}{}
\newcommand{\refname}{REFERENCES}
\renewcommand{\appendixrefname}{REFERENCES FOR THE APPENDIX}
```

The default bibliography in the `lipics` document class formatting is not compatible with the `alpha` bibliography style. We fix this here.

```latex
\renewcommand{\appendixbibliographyprelim}{\%\global\let@oldbiblabel@oldbiblabel@oldbiblabel\biblabel\@def@biblabel{\hspace*{-2em}\small@oldbiblabel}}%
\fi
```

Change History

<table>
<thead>
<tr>
<th>v1.0.0</th>
<th>v1.0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>General: Prevent empty bibliography environment; fix</td>
<td>General: Prevent empty bibliography environment; fix</td>
</tr>
</tbody>
</table>
typos 1

v1.0.2
\axp@newtheoremrep: Fix display of repeated theorem counter in some document classes 16
Fix missing space between repeated theorem counter and theorem note 16

v1.0.3
\appendixbibliographyprelim: Support for lipo-v2016 23
General: Note on entire sections in appendix 2
\proofsketch: Ignore spaces after beginning of Proof sketch ... 11

v1.0.4
\appendixprelim: Configurable appendix style 11
\axp@bibliography: bibliography option 9
General: More faithful theorem style for ACM templates 22
More robust coherent styling of proof sketches 22
Re-establish custom proof environments 8
Show options commented on in margin and index 1

v1.0.5
General: Ability to specify a sectioning counter in newtheoremrep 2
Fix compilation of proofsketch environment in inline mode ... 4

v1.0.6
\axp@newtheorem: Introduce intermediary command for theorem macro 10
\axp@writesection: Fix extraneous space after section number in appendix titles ... 21
General: Better support of Springer document classes 12
Deal with document classes where the bibliography is called \bibname 22
Support of new ACM document class (acmart.cls) 23
\axp@newtheoremrep: Better handling of note-free theorems in document classes that treat theorems differently when they have an empty note 15
Fix incorrect use of \noexpand in optional argument of macro environment 16

v1.1.0
\FVE@axp@VerbatimOut: Make apxproof compatible with independent use of fancyvrb ... 14
\appendixsectionformat: Fix missing space in default \appendixsectionformat ... 11
\axp@proofsfile: Initialization deferred to \AtBeginDocument for compatibility with \dumped precompiled preambles (K. D. Bauer) 13
\axp@redefineslabels: Fix \label not being disabled in amsmath environments, where \label@in@display is used instead (K. D. Bauer) 11
\axp@repeqn: repeqn option 9
\axp@unactivateeightbit: Fix compilation of non-ASCII characters with \usepackage[utf8]{inputenc} .. 14
\axp@writesection: Make \axp@tmp wrapper more robust. Resolves issues from use of section title in fancyhdr, and in \tableofcontents (K. D. Bauer) 21
\section: Fix handling of fragile macros within section headings. See #22. 20
Rewrote definition of \section to enable optional argument. See #23. (K. D. Bauer) 20
\tableofcontents: Disable section management for table of contents 21
General: Added forward-link mechanism (K. D. Bauer) 17

v1.2.0
\axp@newtheoremrep: Fix formatting of theorems without
Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

Symbols

<table>
<thead>
<tr>
<th>Command</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>@oldbiblabel</td>
<td>457, 458</td>
</tr>
<tr>
<td>@oparg</td>
<td>83, 86</td>
</tr>
<tr>
<td>@section</td>
<td>358</td>
</tr>
<tr>
<td>@acmtitlebox</td>
<td>438</td>
</tr>
<tr>
<td>@aurout</td>
<td>384</td>
</tr>
<tr>
<td>@axp@newtheorem</td>
<td>71, 118</td>
</tr>
<tr>
<td>@begintheorem</td>
<td>232</td>
</tr>
<tr>
<td>@biblabel</td>
<td>457, 458</td>
</tr>
<tr>
<td>@bsphack</td>
<td>178</td>
</tr>
<tr>
<td>@enddocmenthook</td>
<td>407</td>
</tr>
<tr>
<td>@esphack</td>
<td>191</td>
</tr>
<tr>
<td>@extra@binfo</td>
<td>410</td>
</tr>
<tr>
<td>@ifnextchar</td>
<td>348, 357</td>
</tr>
<tr>
<td>@ifpackageloaded</td>
<td>7</td>
</tr>
<tr>
<td>@ifstar</td>
<td>71, 359</td>
</tr>
<tr>
<td>@namedef</td>
<td>410</td>
</tr>
<tr>
<td>@noligs</td>
<td>186</td>
</tr>
<tr>
<td>\appendix</td>
<td>414</td>
</tr>
<tr>
<td>\appendixbibliographyprelim</td>
<td>5, 89, 429, 456</td>
</tr>
<tr>
<td>\appendixbibliographystyle</td>
<td>5, 89, 416</td>
</tr>
<tr>
<td>\appendixprelim</td>
<td>5, 89, 413</td>
</tr>
<tr>
<td>\appendixproof</td>
<td>150, 329</td>
</tr>
<tr>
<td>\appendixproof (environment)</td>
<td>2, 146, 311</td>
</tr>
<tr>
<td>@appendixrefname</td>
<td>5, 89, 422, 424, 450</td>
</tr>
<tr>
<td>\appendixsectionformat</td>
<td>5, 89, 388</td>
</tr>
</tbody>
</table>
References

A Proofs for Section 1 (Usage)

This content is in the appendix.

Proof. This proof is in the appendix.

Fooobar 2. This foobar is repeated in the appendix.

Proof. This is the proof of the repeated foobar.

This is a citation in the appendix [Unk16].

References for the Appendix