
The extension package curve2e
Claudio Beccari∗

Version v.2.2.22 – Last revised 2023-01-01.

Contents
1 Introduction 2

2 Acknowledgements 6

3 Source code 7
3.1 Some preliminary exten-

sions to the pict2e package 7
3.2 Line thickness macros . . 8
3.3 Improved line and vector

macros 9
3.4 Dashed and dotted lines . 11
3.5 Coordinate handling . . . 13
3.6 Vectors 16
3.7 Polylines and polygons . . 18
3.8 The red service grid . . . 20

4 Labelling the graphical ele-
ments 22

5 Math operations on frac-
tional operands 24
5.1 The division macro 25
5.2 Trigonometric functions . 26
5.3 Arcs and curves prelimi-

nary information 27
5.4 Complex number macros . 28
5.5 Arcs and curved vectors . 33

5.5.1 Arcs 33
5.5.2 Arc vectors 36

5.6 General curves 39
5.7 Cubic splines 40
5.8 Quadratic splines 48

6 Conclusion 52

7 The README.txt file 52

8 The roll-back package ver-
sion curve2e-v161 55

Abstract
This file documents the curve2e extension package to the pict2e bundle

implementation; the latter was described by Lamport himself in the 1994
second edition of his LATEX handbook.

Please take notice that on April 2011 a new updated version of the pack-
age pict2e has been released that incorporates some of the commands de-
fined in early versions of this package; apparently there are no conflicts, but
only the advanced features of curve2e remain available for extending the
above improved package.

This extension redefines some commands and introduces some more
drawing facilities that allow to draw circular arcs and arbitrary curves with
the minimum of user intervention. This version is open to the contribution
of other users as well as it may be incorporated in other people’s packages.
Please cite the original author and the chain of contributors.

∗E-mail: claudio dot beccari at gmail dot com

1

1 Introduction
Package pict2e was announced in issue 15 of latexnews around December 2003;
it was specified that the new package would replace the dummy one that was been
accompanying every release of LATEX 2ε since its beginnings in 1994. The dummy
package was just issuing an info message that simply announced the temporary
unavailability of the real package.

Eventually Gäßlein and Niepraschk implemented what Lamport himself had
already documented in the second edition of his LATEX handbook, that is a LATEX
package that contained the macros capable of removing all the limitations con-
tained in the standard commands of the original picture environment; specifically
what follows.

1. The line and vector slopes were limited to the ratios of relative prime one-
digit integers of magnitude not exceeding 6 for lines and 4 for vectors.

2. Filled and unfilled full circles were limited by the necessarily limited number
of specific glyphs contained in the special LATEX picture fonts.

3. Quarter circles were also limited in their radii for the same reason.

4. Ovals (rectangles with rounded corners) could not be too small because of
the unavailability of small radius quarter circles, nor could be too large, in
the sense that after a certain radius the rounded corners remained the same
and would not increase proportionally to the oval size.

5. Vector arrows had only one possible shape and matched the limited number
of vector slopes.

6. For circles and inclined lines and vectors just two possible thicknesses were
available.

The package pict2e removes most if not all the above limitations.

1. Line and vector slopes are virtually unlimited; the only remaining limitation
is that the direction coefficients must be three-digit integer numbers (but
see below); they need not be relatively prime; with the 2009 upgrade even
this limitation was removed and now slope coefficients can be any fractional
number whose magnitude does not exceed 16 384, the maximum dimension
in points that TEX can handle.

2. Filled and unfilled circles can be of any size.

3. Ovals can be designed with any specified corner curvature and there is vir-
tually no limitation to such curvatures; of course corner radii should not
exceed half the lower value between the base and the height of the oval.

4. There are two shapes for the arrow tips; the triangular one traditional with
LATEX vectors, or the arrow tip with PostScript style.

2

5. The \linethickness command changes the thickness of all lines, straight,
curved, vertical, horizontal, arrow tipped, et cetera.

This specific extension package curve2e adds the following features.

1. Point coordinates my be specified in both cartesian and polar form: inter-
nally they are handled as cartesian coordinates, but users can specify their
points also in polar form. In order to avoid confusion with other graphic
packages, curve2e uses the usual comma separated couple 〈x, y〉 of integer
or fractional numbers for cartesian coordinates, and the colon separated pair
〈θ〉:〈ρ〉 for polar coordinates (the angle preceding the radius). All graphic
object commands accept polar or cartesian coordinates at the choice of users
who may use for each object the formalism they prefers. Also the put and
\multiput commands have been redefined so as to accept cartesian or po-
lar coordinates. The same holds true for the low level pict2e commands
\moveto, \lineto, and \curveto.
Of course the user must pay attention to the meaning of cartesian vs. polar
coordinates. Both imply a displacement with respect to the actual origin of
the axes. So when a circle is placed at coordinates a, b with a normal \put
command, the circle center is placed exactly is that point; with a normal
\put command the same happens if coordinates α:ρ are specified. But if
the \put command is nested into another \put command, the current origin
of the axes is displaced — this is obvious and the purpose of nesting \put
commands is exactly that. But if a segment is specified so that its ending
point is at a specific distance and in specific direction from its starting point,
polar coordinates appear to be the most convenient to use; in this case,
though, the origin of the axes becomes the starting point of the segment,
therefore the segment might be drawn in a strange way. Attention has been
paid to avoid such misinterpretation, but maybe some unusual situation
may not have come to my mind; feedback is very welcome. Meanwhile pay
attention when you use polar coordinates.

2. Most if not all cartesian coordinate pairs and slope pairs are treated as
ordered pairs, that is complex numbers; in practice users do not notice any
difference from what they were used to, but all the mathematical treatment
to be applied to these entities is coded as complex number operations, since
complex numbers may be viewed non only as ordered pairs, but also as
vectors or as roto-amplification operators.

3. Commands for setting the line terminations were introduced; the user can
chose between square or round caps; the default is set to round caps; now
this feature is directly available with pict2e.

4. Commands for specifying the way two lines or curves join to one another.

5. Originally the \line macro was redefined so as to allow large (up to three
digits) integer direction coefficients, but maintaining the same syntax as in
the original picture environment; now pict2e removes the integer number

3

limitations and allows fractional values, initially implemented by curve2e,
and then introduced directly in pict2e.

6. A new macro \Line was originally defined by curve2e so as to avoid the
need to specify the horizontal projection of inclined lines; now this function-
ality is available directly with pict2e; but this curve2e macro name now
conflicts with pict2e 2009 version; therefore its name is changed to \LIne
and supposedly it will not be used very often, if ever, by the end user (but
it is used within this package macros).

7. A new macro \LINE was defined in order to join two points specified with
their coordinates; this is now the normal behaviour of the \Line macro of
pict2e so that in this package \LINE is now renamed \segment; there is no
need to use the \put command with this line specification.

8. A new macro \DashLine (alias: \Dline) is defined in order to draw dashed
lines joining any two given points; the dash length and gap (equal to one
another) get specified through one of the macro arguments. The starting
point may be specified in cartesian or polar form; the end point in cartesian
format specifies the desired end point; while if the second point is in polar
form it is meant relative to the starting point, not as an absolute end point.
See the examples further on.

9. A similar new macro \Dotline is defined in order to draw dotted straight
lines as a sequence of equally spaced dots, where the gap can be specified by
the user; such straight line may have any inclination, as well as the above
dashed lines. Polar coordinates for the second point have the same relative
meaning as specified for the \Dashline macro.

10. Similar macros are redefined for vectors; \vector redefines the original
macro but with the vector slope limitations removed; \Vector gets spec-
ified with its two horizontal and vertical components in analogy with \LIne;
\VECTOR joins two specified points (without using the \put command) with
the arrow pointing to the second point.

11. A new macro \polyline for drawing polygonal lines is defined that accepts
from two vertices up to an arbitrary (reasonably limited) number of them
(available now also in pict2e); here it is redefined so as to allow an optional
specification of the way segments for the polyline are joined to one another.
Vertices may be specified with polar coordinates.

12. The pict2e polygon macro to draw closed polylines (in practice general
polygons) has been redefined in such a way that it can accept the various
vertices specified with polar coordinates. The polygon* macro produces
a color filled polygon; the default color is black, but a different color may
be specified with the usual \color command given within the same group
where \polygon* is enclosed.

4

13. A new macro \Arc is defined in order to draw an arc with arbitrary radius
and arbitrary aperture (angle amplitude); this amplitude is specified in sexa-
gesimal degrees, not in radians; a similar functionality is now achieved with
the \arc macro of pict2e, which provides also the starred version \arc*
that fills up the interior of the generated circular arc with the current color.
It must be noticed that the syntax is slightly different, so that it is reasonable
that these commands, in spite of producing identical arcs, might be more
comfortable with this or that syntax.

14. Two new macros \VectorArc and \VectorARC (alias \VVectorArc) are de-
fined in order to draw circular arcs with an arrow at one or both ends.

15. A new macro \Curve is defined so as to draw arbitrary curved lines by means
of cubic Bézier splines; the \Curve macro requires only the curve nodes and
the directions of the tangents at each node. The starred version fills up the
interior of the curve with the current color.

16. The above \Curve macro is recursive and it can draw an unlimited (reason-
ably limited) number of connected Bézier spline arcs with continuous tan-
gents except for cusps; these arcs require only the specification of the tangent
direction at the interpolation nodes. It is possible to use a lower level macro
\CbezierTo that does the same but lets the user specify the control points
of each arc; it is more difficult to use but it is more performant.

17. The basic macros used within the cumulative \Curve macro can be used
individually in order to draw any curve, one cubic arc at the time; but they
are intended for internal use, even if it is not prohibited to use them; by
themselves such arcs are not different form those used by Curve, but the final
command, \FillCurve, should be used in place of \CurveFinish, so as to fill
up the closed path with the locally specified color; see the documentation
curve2e-manual.pdf file. It is much more convenient to use the starred
version of the \Curve macro.

The pict2e package already defines macros such as \moveto, \lineto,
\curveto, \closepath, \fillpath, and \strokepath; of course these macros
can be used by the end user, and sometimes they perform better than the macros
defined in this package, because the user has a better control on the position of
each Bézier-spline control points, while here the control points are sort of rigid. It
would be very useful to resort to the hobby package, but its macros are compatible
with those of the tikz and pgf packages, not with curve2e; an interface should
be created in order to deal with the hobby package, but this has not been done
yet. In any case they are redefined so as to accept symbolic names for the point
coordinates in both the cartesian and polar form.

In order to make the necessary calculations many macros have been defined so
as to use complex number arithmetics to manipulate point coordinates, directions
(unit vectors, also known as ‘versors’), rotations and the like. In the first versions
of this package the trigonometric functions were also defined in a way that the
author believed to be more efficient than those defined by the trig package; in any

5

case the macro names were sufficiently different to accommodate both definition
sets in the same LATEX run. With the progress of the LATEX 3 language, the xfp
has recently become available, by which any sort of calculations can be done with
floating point decimal numbers; therefore the most common algebraic, irrational
and transcendental functions can be computed in the background with the stable
internal floating point facilities. We maintain some computation with complex
number algebra, but use the xfp functionalities to implement them and to make
other calculations.

Many aspects of this extension could be fine tuned for better performance;
many new commands could be defined in order to further extend this extension.
If the new service macros are accepted by other TEX and LATEX programmers,
this version could become the start for a real extension of the pict2e package or
even become a part of it. Actually some macros have already been included in the
pict2e package. The \Curve algorithm, as said before, might be redefined so as
to use the macros introduced by the hobby package, that implements for the tikz
and pgf packages the same functionalities that John Hobby implemented for the
METAFONT and METAPOST programs.

For these reasons I suppose that every enhancement should be submitted to
Niepraschk, who is the maintainer of pict2e; he is the only one who can decide
whether or not to incorporate new macros in the pict2e package.

Warning In 2020 the LATEX Project Team upgraded the LATEX native
picture environment so that all information concerning lengths (line and vec-
tor lengths, coordinates, et cetera) may be expressed with dimension expressions
such as 0.71\textwidth, \parindent + 5mm, \circle{1ex}, and so on. With
such dimensional specifications, the information does not depend anymore on
\unitlength; therefore such dimensional forms do not scale by changing the
value of \unitlength. pict2e in 2020-09-30 was correspondingly upgraded to
version 0.4b. Apparently such upgrades do not have any influence on curve2e
workings, or, at least, when no explicit dimensions are used; this applies in partic-
ular when the \AutoGrid or the GraphGrid macros are used; also he coordinates
processing should be done with real numbers, not with dimensions. Nevertheless
feedback is welcome if some corrections are needed.

2 Acknowledgements
I wish to express my deepest thanks to Michel Goosens who spotted some errors
and very kindly submitted them to me so that I was able to correct them.

Josef Tkadlec and the author collaborated extensively in order to make a better
real long-division so as to get correctly the quotient fractional part and to avoid as
much as possible any numeric overflow; many Josef’s ideas are incorporated in the
macro that was implemented in the previous versions of this package, although the
macro used by Josef was slightly different. Both versions aim/aimed at a better
accuracy and at widening the operand ranges. In this version we abandoned our
long-division macro, and substituted it with the floating point division provided
by the xfp package.

6

Daniele Degiorgi spotted a fault in the kernel definition of \linethickness
that heavily influenced also curve2e; see below in the code documentation part.

Thanks also to Jin-Hwan Cho and Juho Lee who suggested a small but crucial
modification in order to have curve2e work smoothly also with XeTeX (XeLaTeX).
Actually if pict2e, version 0.2x or later, dated 2009/08/05 or later, is being used,
such modification is not necessary any more, but it’s true that it became imperative
when older versions were used.

Some others users spotted other “features” that did not produce the desired
results; they have been acknowledged by footnotes in correspondence with the
corrections that were made thanks their feedback.

3 Source code
3.1 Some preliminary extensions to the pict2e package
The necessary preliminary code has already been introduced. Here we require the
color and graphicx packages plus the pict2e one; for the latter we make sure
that a sufficiently recent version is used. If you want to use package xcolor, load
it after curve2e.

Here we load also the xparse and xfp packages because we use their function-
alities; but we do load them only if they are not already loaded with or without
options; nevertheless we warn the user who wants to load them explicitly: do
this action before loading curve2e. The xfp package is absolutely required; if
this package is not found in the TEX system installation, the loading of this new
curve2e is aborted, and the previous version 1.61 is loaded in its place; the over-
all functionalities should non change much, but the functionalities of xfp are not
available.

1 \IfFileExists{xfp.sty}{%
2 \RequirePackage{graphicx,color}
3 \RequirePackageWithOptions{pict2e}[2014/01/01]
4 \@ifl@aded{sty}{xparse}{}{\RequirePackage{xparse}}
5 \@ifl@aded{sty}{xfp}{}{\RequirePackage{xfp}}%
6 }{%
7 \RequirePackage{curve2e-v161}%
8 \PackageWarningNoLine{curve2e}{%
9 Package xfp is required, but apparently\MessageBreak%

10 such package cannot be found in this \MessageBreak%
11 TeX system installation\MessageBreak%
12 Either your installation is not complete \MessageBreak%
13 or it is older than 2018-10-17.\MessageBreak%
14 \MessageBreak%
15 ***************************************\MessageBreak%
16 Version 1.61 of curve2e has been loaded\MessageBreak%
17 instead of the current version \MessageBreak%
18 ***************************************\MessageBreak}%
19 \endinput
20 }

7

Since we already loaded package xfp or at least we explicitly load it in our pream-
ble, we add, if not already defined by the package, three new commands that allow
to make floating point tests, and two “while” cycles1

21 %
22 \ExplSyntaxOn
23 \AtBeginDocument{%
24 \ProvideExpandableDocumentCommand\fptest{m m m}{%
25 \fp_compare:nTF{#1}{#2}{#3}\ignorespaces}
26 \ProvideExpandableDocumentCommand\fpdowhile{m m}{%
27 \fp_do_while:nn{#1}{#2}\ignorespaces}
28 \ProvideExpandableDocumentCommand\fpwhiledo{m m}{%
29 \fp_while_do:nn{#1}{#2}\ignorespaces}
30 }
31 \ExplSyntaxOff
32

The while cycles differ in the order of what they do; see the interface3.pdf
documentation file for details.

The next macros are just for debugging. With the trace package it would
probably be better to define other macros, but this is not for the users, but for
the developers.

33 \def\TRON{\tracingcommands\tw@ \tracingmacros\tw@}%
34 \def\TROF{\tracingcommands\z@ \tracingmacros\z@}%

Next we define some new dimension registers that will be used by the subse-
quent macros; should they be already defined, there will not be any redefinition;
nevertheless the macros should be sufficiently protected so as to avoid overwriting
register values loaded by other macro packages.

35 \ifx\undefined\@tdA \newdimen\@tdA \fi
36 \ifx\undefined\@tdB \newdimen\@tdB \fi
37 \ifx\undefined\@tdC \newdimen\@tdC \fi
38 \ifx\undefined\@tdD \newdimen\@tdD \fi
39 \ifx\undefined\@tdE \newdimen\@tdE \fi
40 \ifx\undefined\@tdF \newdimen\@tdF \fi
41 \ifx\undefined\defaultlinewidth \newdimen\defaultlinewidth \fi

3.2 Line thickness macros
It is better to define a macro for setting a different value for the line and
curve thicknesses; the ‘\defaultlinewidth should contain the equivalent of
\@wholewidth, that is the thickness of thick lines; thin lines are half as thick;
so when the default line thickness is specified to, say, 1pt, thick lines will be 1pt
thick and thin lines will be 0.5pt thick. The default whole width of thick lines is
0,8pt, but this is specified in the kernel of LATEX and/or in pict2e. On the op-
posite it is necessary to redefine \linethickness because the LATEX kernel global

1Thanks to Brian Dunn who spotted a bug in the previous 2.0.x version definitions.

8

definition does not hide the space after the closed brace when you enter something
such as \linethickness{1mm} followed by a space or a new line.2

42 \gdef\linethickness#1{%
43 \@wholewidth#1\@halfwidth.5\@wholewidth\ignorespaces}%
44 \newcommand\defaultlinethickness[1]{\defaultlinewidth=#1\relax
45 \def\thicklines{\linethickness{\defaultlinewidth}}%
46 \def\thinlines{\linethickness{.5\defaultlinewidth}}\thinlines
47 \ignorespaces}%

The \ignorespaces at the end of these macros is for avoiding spurious spaces to
get into the picture that is being drawn, because these spaces introduce picture
deformities often difficult to spot and to eliminate.

3.3 Improved line and vector macros
The macro \LIne allows to draw a line with arbitrary inclination as if it was a
polygonal with just two vertices; actually it joins the canvas coordinate origin
with the specified relative coordinate; therefore this object must be set in place
by means of a \put command. Since its starting point is always at a relative 0,0
coordinate point inside the box created with \put, the two arguments define the
horizontal and the vertical component respectively.

48 \def\LIne(#1){{\GetCoord(#1)\@tX\@tY
49 \moveto(0,0)
50 \pIIe@lineto{\@tX\unitlength}{\@tY\unitlength}\strokepath}\ignorespaces
51 }%

A similar macro \segment operates between two explicit points with absolute
coordinates, instead of relative to the position specified by a \put command; it
resorts to the \polyline macro that shall be defined in a while. The \@killglue
command might be unnecessary, but it does not harm; it eliminates any explicit
or implicit spacing that might precede this command.

52 \def\segment(#1)(#2){\@killglue\polyline(#1)(#2)}%

By passing its ending points coordinates to the \polyline macro, both macro
arguments are a pair of coordinates, not their components; in other words, if
P1 = (x1, y2) and P2 = (x2, y2), then the first argument is the couple x1, y1 and
likewise the second argument is x2, y2. Notice that since \polyline accepts also
the vertex coordinates in polar form, also\segment accepts the polar form. Please
remember that the decimal separator is the decimal point, while the comma acts
as cartesian coordinate separator. This recommendation is particularly important
for non-English speaking users, since in all other languages the decimal separator
is or must by a comma.

The \line macro is redefined by making use of a division routine performed
in floating point arithmetics; for this reason the LATEX kernel and the overall TEX
system installation must be as recent as the release date of the xfp package, i.e.

2Thanks to Daniele Degiorgi degiorgi@inf.ethz.ch). This feature should have been elim-
inated from the LATEX 2ε ¡2020.02.02¿ patch level 4 update. This glitch has bee eliminated
according to the LaTeX Newsletter Nr. 32.

9

2018-10-17. The floating point division macro receives in input two fractional
numbers and yields on output their fractional ratio. Notice that this command
\line should follow the same syntax as the original pre 1994 LATEX version; but
the new definition accepts the direction coefficients in polar mode; that is, instead
of specifying a slope of 30◦ with its actual sine and cosine values (or values pro-
portional to such functions), for example, (0.5,0.866025), you may specify it as
(30:1), i.e. as a unit vector with the required slope of 30◦.

The beginning of the macro definition is the same as that of pict2e:
53 \def\line(#1)#2{\begingroup
54 \@linelen #2\unitlength
55 \ifdim\@linelen<\z@\@badlinearg\else

but as soon as it is verified that the line length is not negative, things change
remarkably; in facts the machinery for complex numbers is invoked. This makes
the code much simpler, not necessarily more efficient; nevertheless \DirOfVect
takes the only macro argument (that actually contains a comma separated pair
of fractional numbers) and copies it to \Dir@line (an arbitrarily named control
sequence) after re-normalizing to unit magnitude; this is passed to GetCoord that
separates the two components into the control sequences \d@mX and \d@mY; these in
turn are the values that are actually operated upon by the subsequent commands.

56 \expandafter\DirOfVect#1to\Dir@line
57 \GetCoord(\Dir@line)\d@mX\d@mY

The normalised vector direction is actually formed with the directing cosines of
the line direction; since the line length is actually the horizontal component for
non vertical lines, it is necessary to compute the actual line length for non vertical
lines by dividing the given length by the magnitude of the horizontal cosine \d@mX,
and the line length is accordingly scaled:

58 \ifdim\d@mX\p@=\z@\else
59 \edef\sc@lelen{\fpeval{1 / abs(\d@mX)}}\relax
60 \@linelen=\sc@lelen\@linelen
61 \fi

Of course, if the line is vertical this division must not take place. Finally the
moveto, lineto and stroke language keywords are invoked by means of the in-
ternal pict2e commands in order to draw the line. Notice that even vertical lines
are drawn with the PDF language commands instead of resorting to the DVI low
level language that was used in both pict2e and the original (pre 1994) picture
commands; it had a meaning in the old times, but it certainly does not have any
nowadays, since lines are drawn by the driver that produces the output in a human
visible document form, not by TEX the program.

62 \moveto(0,0)\pIIe@lineto{\d@mX\@linelen}{\d@mY\@linelen}%
63 \strokepath
64 \fi
65 \endgroup\ignorespaces}%

The new definition of the command \line, besides the ease with which is readable,
does not do different things from the definition of pict2e 2009, even if it did
perform in a better way compared to the 2004 version that was limited to integer

10

direction coefficients up to 999 in magnitude. Moreover this curve2e version
accepts polar coordinates as slope pairs, making it much simpler to draw lines
with specific slopes.

It is necessary to redefine the low level macros \moveto, \lineto, and
\curveto, because their original definitions accept only cartesian coordinates. We
proceed the same as for the \put command.

66 \let\originalmoveto\moveto
67 \let\originallineto\lineto
68 \let\originalcurveto\curveto
69
70 \def\moveto(#1){\GetCoord(#1)\MTx\MTy
71 \originalmoveto(\MTx,\MTy)\ignorespaces}
72 \def\lineto(#1){\GetCoord(#1)\LTx\LTy
73 \originallineto(\LTx,\LTy)\ignorespaces}
74 \def\curveto(#1)(#2)(#3){\GetCoord(#1)\CTpx\CTpy
75 \GetCoord(#2)\CTsx\CTsy\GetCoord(#3)\CTx\CTy
76 \originalcurveto(\CTpx,\CTpy)(\CTsx,\CTsy)(\CTx,\CTy)\ignorespaces}

3.4 Dashed and dotted lines
Dashed and dotted lines are very useful in technical drawings; here we introduce
two macros that help drawing them in the proper way; besides the obvious differ-
ence between the use of dashes or dots, they may refer in a different way to the
end points that must be specified to the various macros.

The coordinates of the first point P1, where le line starts, are always referred
to the origin of the coordinate axes; the end point P2 coordinates are referred
to the origin of the axes if in cartesian form, while with the polar form they are
referred to P1; both coordinate types have their usefulness: see the documentation
curve2e-manual.pdf file.

The above mentioned macros create dashed lines between two given points,
with a dash length that must be specified, or dotted lines, with a dot gap that
must be specified; actually the specified dash length or dot gap is a desired one;
the actual length or gap is computed by integer division between the distance of
the given points and the desired dash length or dot gap; when dashes are involved,
this integer is tested in order to see if it is an odd number; if it’s not, it is increased
by unity. Then the actual dash length or dot gap is obtained by dividing the above
distance by this number.

Another vector P2 − P1 is created by dividing it by this number; then, when
dashes are involved, it is multiplied by two in order to have the increment from
one dash to the next; finally the number of patterns is obtained by integer division
of this number by 2 and increasing it by 1. Since the whole dashed or dotted line
is put in position by an internal \put command, is is not necessary to enclose the
definitions within groups, because they remain internal to the \put argument box.

Figure 6 of the curve2e-manual.pdf user manual shows the effect of the slight
changing of the dash length in order to maintain approximately the same dash-
space pattern along the line, irrespective of the line length. The syntax is the

11

following:

\Dashline(〈first point〉)(〈second point〉){〈dash length〉}

where 〈first point〉 contains the coordinates of the starting point and 〈second point〉
the absolute (cartesian) or relative (polar) coordinates of the ending point; of
course the 〈dash length〉, which equals the dash gap, is mandatory. An optional
asterisk is used to be back compatible with previous implementations but its use
is now superfluous; with the previous implementation of the code, in facts, if
coordinates were specified in polar form, without the optional asterisk the dashed
line was misplaced, while if the asterisk was specified, the whole object was put in
the proper position. With this new implementation, both the cartesian and polar
coordinates always play the role they are supposed to play independently from the
asterisk. The \IsPolar macro is introduced to analyse the coordinate type used
for the second argument, and uses such second argument accordingly.

77 \def\IsPolar#1:#2?{\def\@TempOne{#2}\unless\ifx\@TempOne\empty
78 \expandafter\@firstoftwo\else
79 \expandafter\@secondoftwo\fi}
80
81 \ifx\Dashline\undefined
82 \def\Dashline{\@ifstar{\Dashline@}{\Dashline@}}% bckwd compatibility
83 \let\Dline\Dashline
84
85 \def\Dashline@(#1)(#2)#3{\put(#1){%
86 \GetCoord(#1)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttA
87 \GetCoord(#2)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttB
88 \IsPolar#2:?{% Polar
89 \Dashline@@(0,0)(\V@ttB){#3}}%
90 {% Cartesian
91 \SubVect\V@ttA from\V@ttB to\V@ttC
92 \Dashline@@(0,0)(\V@ttC){#3}%
93 }
94 }}
95
96 \def\Dashline@@(#1)(#2)#3{%
97 \countdef\NumA3254\countdef\NumB3252\relax
98 \GetCoord(#1)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttA
99 \GetCoord(#2)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttB

100 \SubVect\V@ttA from\V@ttB to\V@ttC
101 \ModOfVect\V@ttC to\DlineMod
102 \DivideFN\DlineMod by#3 to\NumD
103 \NumA=\fpeval{trunc(\NumD,0)}\relax
104 \unless\ifodd\NumA\advance\NumA\@ne\fi
105 \NumB=\NumA \divide\NumB\tw@
106 \DividE\DlineMod\p@ by\NumA\p@ to\D@shMod
107 \DividE\p@ by\NumA\p@ to \@tempa
108 \Multvect{\V@ttC}{\@tempa,0}\V@ttB
109 \Multvect{\V@ttB}{2,0}\V@ttC
110 \advance\NumB\@ne

12

111 \put(\V@ttA){\multiput(0,0)(\V@ttC){\NumB}{\LIne(\V@ttB)}}
112 \ignorespaces}
113 \fi

A simpler \Dotline macro draws a dotted line between two given points; the
dots are rather small, therefore the inter dot distance is computed in such a way as
to have the first and the last dot at the exact position of the dotted-line end-points;
again the specified dot distance is nominal in the sense that it is recalculated in
such a way that the first and last dots coincide with the line end points. Again
if the second point coordinates are in polar form they are considered as relative
to the first point.Since the dots must emerge from the background of the drawing
they should not be too small: they must be seen; therefore their diameter cannot
be tied to the unit length of the particular drawing, but must have at visible size;
by default it is set to 0.5 mm (about 20 mills, in US units) but through an optional
argument to the macro, it may be set to any desired size; remember that 1 pt is
about one third of a millimeter; sometimes it might be too small; 1 mm is a very
black dot, therefore users must pay attention when they specify the dot diameter,
so as not to exaggerate in either direction. The syntax is as follows:

\Dotline(〈start point〉)(〈end point〉){〈dot distance〉}[〈diameter〉]

114 \ifx\Dotline\undefined
115 \providecommand\Dotline{}
116 \RenewDocumentCommand\Dotline{R(){0,0} R(){1,0} m O{1mm}}{%
117 \put(#1){\edef\Diam{\fpeval{{#4}/\unitlength}}%
118 \IsPolar#2:?{\CopyVect#2to\DirDot}%
119 {\SubVect#1from#2to\DirDot}%
120 \countdef\NumA=3254\relax
121 \ModAndAngleOfVect\DirDot to\ModDirDot and\AngDirDot
122 \edef\NumA{\fpeval{trunc(\ModDirDot/{#3},0)}}%
123 \edef\ModDirDot{\fpeval{\ModDirDot/\NumA}}%
124 \multiput(0,0)(\AngDirDot:\ModDirDot){\inteval{\NumA+1}}%
125 {\makebox(0,0){\circle*{\Diam}}}}\ignorespaces}
126 \fi

Notice that vectors as complex numbers in their cartesian and polar forms
always represent a point position referred to a local origin of the axes; this is
why in figures 6 and 7 of the user manual the dashed and dotted lines that start
from the lower right corner of the graph grid, and that use polar coordinates, are
put in their correct position thanks to the different behaviour obtained with the
\IsPolar macro.

3.5 Coordinate handling
The new macro \GetCoord splits a vector (or complex number) specification into
its components; in particular it distinguishes the polar from the cartesian form of
the coordinates. The latter have the usual syntax 〈x,y〉, while the former have
the syntax 〈angle:radius〉. The \put and \multiput commands are redefined to
accept the same syntax; the whole work is done by \SplitNod@ and its subsidiaries.

13

Notice that package eso-pic uses picture macros in its definitions, but
its original macro \LenToUnit is incompatible with this \GetCoord macro; its
function is to translate real lengths into coefficients to be used as multipliers
of the current \unitlength; in case that the eso-pic had been loaded, at the
\begin{document} execution, the eso-pic macro is redefined using the e-TEX
commands so as to make it compatible with these local macros.3

127 \AtBeginDocument{\@ifpackageloaded{eso-pic}{%
128 \renewcommand\LenToUnit[1]{\strip@pt\dimexpr#1*\p@/\unitlength}}{}}%

The above redefinition is delayed at \AtBeginDocument in order to have the pos-
sibility to check if the eso-pic package had actually been loaded. Nevertheless
the code is defined here just because the original eso-pic macro was interfering
with the algorithms of coordinate handling.

But let us come to the real subject of this section. We define a \GettCoord
macro that passes control to the service macro with the expanded arguments;
expanding arguments allows to use macros to named points, instead of explicit
coordinates; with this version of curve2e this facility is not fully exploited, but a
creative user can use this feature. Notice the usual trick to use a dummy macro
that is defined within a group with expanded arguments, but where the group is
closed by the macro itself, so that no traces remain behind after its expansion.

129 \def\GetCoord(#1)#2#3{\bgroup\edef\x{\egroup\noexpand\IsPolar#1:?}\x
130 {% Polar
131 \bgroup\edef\x{\egroup\noexpand\SplitPolar(#1)}\x\SCt@X\SCt@Y}%
132 {% Cartesian
133 \bgroup\edef\x{\egroup\noexpand\SplitCartesian(#1)}\x\SCt@X\SCt@Y}%
134 \edef#2{\SCt@X}\edef#3{\SCt@Y}\ignorespaces}
135
136 \def\SplitPolar(#1:#2)#3#4{%
137 \edef#3{\fpeval{#2 * cosd#1}}\edef#4{\fpeval{#2 * sind#1}}}
138
139 \def\SplitCartesian(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}
140

The macro that detects the form of the coordinates is \IsPolar; it examines the
parameter syntax in order to see if it contains a colon; it has already been used
with the definition of dashed and dotted lines.

In order to accept polar coordinates with \put and \multiput we resort to us-
ing \GetCoord; therefore the redefinition of \put is very simple because it suffices
to save the original meaning of that macro and redefine the new one in terms of
the old one.

141 \let\originalput\put
142 \def\put(#1){\bgroup\GetCoord(#1)\@tX\@tY
143 \edef\x{\noexpand\egroup\noexpand\originalput(\@tX,\@tY)}\x}

For \multiput it is more complicated, because the increments from one position to
the next cannot be done efficiently because the increments in the original definition
are executed within boxes, therefore any macro instruction inside these boxes is

3Thanks to Franz-Joseph Berthold who was so kind to spot the bug.

14

lost. It is a good occasion to modify the \multiput definition by means of the
advanced macro definitions provided by package xparse; we can add also some
error messages for avoiding doing anything when some mandatory parameters are
missing ore are empty, or do not contain anything different from an ordered pair or
a polar form. We add also an optional argument to handle the increments outside
the boxes. The new macro has the following syntax:

\multiput[〈shift〉](〈initial〉)(〈increment〉){〈number〉}{〈object〉}[〈handler〉]

where the optional 〈shift〉 is used to displace to whole set of 〈object〉s from their
original position; 〈initial〉 contains the cartesian or polar coordinates of the initial
point; 〈increment〉 contains the cartesian or polar increment for the coordinates
to be used from the second position to the last; 〈number〉 il the total number
of 〈object〉s to be drawn; 〈object〉 is the object to be put in position at each
cycle repetition; the optional 〈handler〉 may be used to control the current values
of the horizontal and vertical increments. The new definition contains two \put
commands where the second is nested within a while-loop which, in turn, is within
the argument of the first \put command. Basically it is the same idea that the
original macros, but now the increments are computed within the while loop,
but outside the argument of the inner \put command. If the optional 〈handler〉
is specified the increments are computed from the macros specified by the user.
Another new feature: the fourth argument, that contains the number of objects
to be put in place, may be an integer expression such as for example 3*\N+1.

The two increments components inside the optional argument may be set by
means of mathematical expressions operated upon by the \fpeval function given
by the \xfp package already loaded by curve2e. Of course it is the user respon-
sibility to pay attention to the scales of the two axes and to write meaningful
expressions; the figure and code shown in the user manual of this package display
some examples: see the documentation curve2e-manual.pdf file.

144 \RenewDocumentCommand{\multiput}{O{0,0} d() d() m m o }{%
145 \IfNoValueTF{#2}{\PackageError{curve2e}%
146 {\string\multiput\space initial point coordinates missing}%
147 {Nothing done}
148 }%
149 {\IfNoValueTF{#3}{\PackageError{curve2e}
150 {\string\multiput\space Increment components missing}%
151 {Nothing done}
152 }%
153 {\put(#1){\let\c@multicnt\@multicnt
154 \CopyVect #2 to \R
155 \CopyVect#3 to\D
156 \@multicnt=\inteval{#4}\relax
157 \@whilenum \@multicnt > \z@\do{%
158 \put(\R){#5}%
159 \IfValueTF{#6}{#6}{\AddVect#3 and\R to \R}%
160 \advance\@multicnt\m@ne
161 }%

15

162 }%
163 }%
164 }\ignorespaces
165 }

And here it is the new \xmultiput command; remember: the internal cycling
TEX counter \@multicnt is now accessible with the name multicnt as if it was a
LATEX counter, in particular the user can access its contents with a command such
as \value{multicnt}. Such counter is stepped up at each cycle, instead of being
stepped down as in the original \multiput command. The code is not so different
from the one used for the new version of \multiput, but it appears more efficient
and its code more easily readable.

166 \NewDocumentCommand{\xmultiput}{O{0,0} d() d() m m o }{%
167 \IfNoValueTF{#2}{\PackageError{curve2e}{%
168 \string\Xmultiput\space initial point coordinates missing}%
169 {Nothing done}}%
170 {\IfNoValueTF{#3}{\PackageError{curve2e}{%
171 \string\Xmultiput\space Increment components missing}%
172 {Nothing done}}%
173 {\put(#1)%
174 {\let\c@multicnt\@multicnt
175 \CopyVect #2 to \R
176 \CopyVect #3 to \D
177 \@multicnt=\@ne
178 \fpdowhile{\value{multicnt} < \inteval{#4+1}}% Test
179 {%
180 \put(\R){#5}
181 \IfValueTF{#6}{#6}{%
182 \AddVect#3 and\R to \R}
183 \advance\@multicnt\@ne
184 }
185 }
186 }}\ignorespaces
187 }

Notice that the internal macros \R and \D, (respectively the current point coor-
dinates, in form of a complex number, where to put the 〈object〉, and the current
displacement to find the next point) are accessible to the user both in the 〈object〉
argument field and the 〈handler〉 argument field. The code used in figure 18 if
the user manual shows how to create the hour marks of a clock together with the
rotated hour roman numerals.

3.6 Vectors
The redefinitions and the new definitions for vectors are a little more complicated
than with segments, because each vector is drawn as a filled contour; the original
pict2e 2004 macro checked if the slopes are corresponding to the limitations spec-
ified by Lamport (integer three digit signed numbers) and sets up a transformation
in order to make it possible to draw each vector as an horizontal left-to-right ar-

16

row and then to rotate it by its angle about its tail point; with pict2e 2009,
possibly this redefinition of \vector is not necessary, but we do it as well and
for the same reasons we had for redefining \line; actually there are two macros
for tracing the contours that are eventually filled by the principal macro; each
contour macro draws the vector with a LATEX or a PostScript styled arrow tip
whose parameters are specified by default or may be taken from the parameters
taken from the PSTricks package if this one is loaded before pict2e; in any case
we did not change the contour drawing macros because if they are modified the
same modification is passed on to the arrows drawn with the curve2e package
redefinitions.

Because of these features the new macros are different from those used for
straight lines.

We start with the redefinition of \vector and we use the machinery for vectors
(as complex numbers) we used for \line. The actual point is to let \vector accept
the slope parameters also in polar form. Therefore it suffices to save the original
definition of \vector as defined in pict2e and and use it as a fallback after
redefining \vector in a “vector” format.4

188 \let\original@vector\vector
189 \def\vector(#1)#2{%
190 \begingroup
191 \GetCoord(#1)\d@mX\d@mY
192 \original@vector(\d@mX,\d@mY){\fpeval{round(abs(#2),6)}}%
193 \endgroup}%

We define the macro that does not require the specification of the length or
the lx length component; the way the new \vector macro works does not actually
require this specification, because TEX can compute the vector length, provided
the two direction components are exactly the horizontal and vertical vector com-
ponents. If the horizontal component is zero, the actual length must be specified
as the vertical component. The object defined with \Vector, as well as \vector,
must be put in place by means of a \put command.

194 \def\Vector(#1){{%
195 \GetCoord(#1)\@tX\@tY
196 \ifdim\@tX\p@=\z@
197 \vector(\@tX,\@tY){\@tY}%
198 \else
199 \vector(\@tX,\@tY){\@tX}%
200 \fi}}

On the opposite the next macro specifies a vector by means of the coordinates
of its end points; the first point is where the vector starts, and the second point
is the arrow tip side. We need the difference of these two coordinates, because it
represents the actual vector.

201 \def\VECTOR(#1)(#2){\begingroup
202 \SubVect#1from#2to\@tempa

4The previous version 2.2.9 of this package contained a glitch that was visible only with line
widths larger than 1.5ṗt. I thank very much Ashish Kumar Das who spotted this glitch and
kindly informed me.

17

203 \expandafter\put\expandafter(#1){\expandafter\Vector\expandafter(\@tempa)}%
204 \endgroup\ignorespaces}

The double tipped vector is built on the \VECTOR macro by simply drawing
two vectors from the middle point of the double tipped vector.

205 \def\VVECTOR(#1)(#2){{\SubVect#1from#2to\@tempb
206 \ScaleVect\@tempb by0.5to\@tempb
207 \AddVect\@tempb and#1to\@tempb
208 \VECTOR(\@tempb)(#2)\VECTOR(\@tempb)(#1)}\ignorespaces}

The pict2e documentation says that if the vector length is zero the macro
draws only the arrow tip; this may work with macro \vector, certainly not with
\Vector and \VECTOR. This might be useful for adding an arrow tip to a circular
arc. See the documentation curve2e-manual.pdf file.

3.7 Polylines and polygons
We now define the polygonal line macro; its syntax is very simple:

\polyline[〈join〉](〈P0〉)(〈P1〉)(〈P2〉)...(〈Pn〉)

Remember: \polyline has been incorporated into pict2e 2009, but we redefine
it so as to allow an optional argument to specify the line join type.

In order to write a recursive macro we need aliases for the parentheses; actually
we need only the left parenthesis, but some editors complain about unmatched
delimiters, so we define an alias also for the right parenthesis.

209 \let\lp@r(\let\rp@r)

The first call to \polyline, besides setting the line joins, examines the first point
coordinates and moves the drawing position to this point; afterwards it looks for
the second point coordinates; they start with a left parenthesis; if this is found
the coordinates should be there, but if the left parenthesis is missing (possibly
preceded by spaces that are ignored by the \@ifnextchar macro) then a warning
message is output together with the line number where the missing parenthesis
causes the warning: beware, this line number might point to several lines further
on along the source file! In any case it’s necessary to insert a \@killgluecommand,
because \polyline refers to absolute coordinates, and not necessarily is put in
position through a \put command that provides to eliminate any spurious spaces
preceding this command.

In order to allow a specification for the joints of the various segments of a
polyline it is necessary to allow for an optional parameter; the default is the bevel
join.

210 \renewcommand*\polyline[1][\beveljoin]{\p@lylin@[#1]}
211
212 \def\p@lylin@[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
213 \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
214 \@ifnextchar\lp@r{\p@lyline}{%
215 \PackageWarning{curve2e}%
216 {Polylines require at least two vertices!\MessageBreak

18

217 Control your polyline specification\MessageBreak}%
218 \ignorespaces}}
219

But if there is a second or further point coordinate, the recursive macro \p@lyline
is called; it works on the next point and checks for a further point; if such a point
exists the macro calls itself, otherwise it terminates the polygonal line by stroking
it.

220 \def\p@lyline(#1){\GetCoord(#1)\d@mX\d@mY
221 \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
222 \@ifnextchar\lp@r{\p@lyline}{\strokepath\ignorespaces}}

The same treatment must be done for the \polygon macros; we use the defining
commands of package xparse, in order to use an optional asterisk; as it is usual
with picture convex lines, the command with asterisk does not trace the contour,
but fills the contour with the current color.The asterisk is tested at the beginning
and, depending on its presence, a temporary switch is set to true; this being the
case the contour is filled, otherwise it is simply stroked.

223 \providecommand\polygon{}
224 \RenewDocumentCommand\polygon{s O{\beveljoin} }{\@killglue\begingroup
225 \IfBooleanTF{#1}{\@tempswatrue}{\@tempswafalse}%
226 \@polygon[#2]}
227
228 \def\@polygon[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
229 \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
230 \@ifnextchar\lp@r{\@@polygon}{%
231 \PackageWarning{curve2e}%
232 {Polygons require at least two vertices!\MessageBreak
233 Control your polygon specification\MessageBreak}%
234 \ignorespaces}}
235
236 \def\@@polygon(#1){\GetCoord(#1)\d@mX\d@mY
237 \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
238 \@ifnextchar\lp@r{\@@polygon}{\pIIe@closepath
239 \if@tempswa\pIIe@fillGraph\else\pIIe@strokeGraph\fi
240 \endgroup
241 \ignorespaces}}

% \unitlength=0.07\hsize
% \begin{picture}(8,8)(-4,-4)\color{red}
% \polygon*(45:4)(135:4)(-135:4)(-45:4)
% \end{picture}
%

Figure 1: The code and the result of defining a polygon with its vertex polar
coordinates

19

Now, for example, a filled polygon can be drawn using polar coordinates for its
vertices; see figure 1 on page 19.

Remember; the polygon polar coordinates are relative to the origin of the local
axes; therefore in order to put a polygon in a different position, it is necessary to
do it through a \put command.

3.8 The red service grid
The next command is handy for debugging while editing one’s drawing; it draws
a red grid with square meshes that are ten drawing units apart; there is no grad-
uation along the grid, since it is supposed to be a debugging aid and users should
know what they are doing; nevertheless it is advisable to displace the grid by
means of a \put command so that its grid lines coincide with graph coordinates
that are multiples of 10. Missing to do so the readings become cumbersome.
The \RoundUp macro provides to increase the grid dimensions to integer multiples
of ten. Actually the new definition of this command does not need a put command
(although it is not prohibited to use it) because its syntax now is the following
one

\GraphGrid(〈l l corner offset〉)(〈grid dimensions〉)

where the first argument is optional: if it is missing, the lower left corner is put
at the origin of the canvas coordinates. Of course also the lower left corner offset
is recommended to be specified with coordinates that are integer multiples of 10;
this is particularly important when the picture environment offset is specified
with non integer multiple of 10 values. Actually, since both arguments are de-
limited with round parentheses, a single argument is assumed to contain the grid
dimensions, while if both arguments are given, the first one is the lower left corner
offset, and the second one the grid dimensions.

In order to render the red grid a little more automatic, a subsidiary service
macro of the picture environment has been redefined in order to store the co-
ordinates of the lower left and upper right corners of the canvas (the compulsory
dimensions and the optional lower left corner shift arguments to the picture
opening statement) in two new variables, so that when the user specifies the (non
vanishing) dimensions of the canvas, the necessary data are already available and
there is no need to repeat them to draw the grid. The new argument-less macro is
named \AutoGrid, while the complete macro is \GraphGrid that requires its ar-
guments as specified above. The advantage of the availability of both commands,
consists in the fact that \AutoGrid covers the whole canvas, while \GraphGrid
may compose a grid that covers either the whole canvas or just a part of it. In
both cases, though, it is necessary the all the canvas coordinates are specified as
multiples of 10 (\unitlengths). This is simple when \GraphGrid is used, while
with \AutoGrid the specification is in the opening environment statement; and
such multiples of 10 might not be the best ones for the final drawing and should
be fine tuned after finishing the drawing and the grid is not necessary anymore.
The actual \AutoGrid command definition accepts two parenthesis delimited ar-
guments, that are not being used in the macro expansion; in this way it is easier to

20

replace \GraphGrid with \AutoGrid if it is desired to do so. The opposite action,
of course is not so simple if the \AutoGrid command is not followed by one or two
arguments as \GraphGrid requires. Approximately \AutoGrid may be viewed as
a \GraphGrid version were both arguments are optional.

242 \def\@picture(#1,#2)(#3,#4){%
243 \edef\pict@urcorner{#1,#2}% New statement
244 \edef\pict@llcorner{#3,#4}% New statement
245 \@picht#2\unitlength
246 \setbox\@picbox\hb@xt@#1\unitlength\bgroup
247 \hskip -#3\unitlength
248 \lower #4\unitlength\hbox\bgroup
249 \ignorespaces}
250 %
251 \def\Gr@phGrid(#1,#2){\bgroup\textcolor{red}{\linethickness{.1\p@}%
252 \RoundUp#1modulo10to\@GridWd \RoundUp#2modulo10to\@GridHt
253 \@tempcnta=\@GridWd \divide\@tempcnta10\relax \advance\@tempcnta\@ne
254 \multiput(0,0)(10,0){\@tempcnta}{\line(0,1){\@GridHt}}%
255 \@tempcnta=\@GridHt \divide\@tempcnta10\advance\@tempcnta\@ne
256 \multiput(0,0)(0,10){\@tempcnta}{\line(1,0){\@GridWd}}\thinlines}%
257 \egroup\ignorespaces}
258
259 \NewDocumentCommand\AutoGrid{d() d()}{\bgroup%
260 \put(\pict@llcorner){\expandafter\Gr@phGrid\expandafter(\pict@urcorner)}%
261 \egroup\ignorespaces}
262
263
264 \NewDocumentCommand\GraphGrid{r() d()}{%
265 \IfValueTF{#2}{\put(#1){\Gr@phGrid(#2)}}%
266 {\put(0,0){\Gr@phGrid(#1)}}}
267

Rounding up is useful because also the grid margins fall on coordinates multiples
of 10.

268 \def\RoundUp#1modulo#2to#3{\edef#3{\fpeval{(ceil(#1/#2,0))*#2}}}%
269 %

The \Integer macro takes a possibly fractional number whose decimal separator,
if present, must be the decimal point and uses the point as an argument delimiter.
If one has the doubt that the number being passed to \Integer might be an
integer, he/she should call the macro with a further point; if the argument is truly
integer this point works as the delimiter of the integer part; if the argument being
passed is fractional this extra point gets discarded as well as the fractional part of
the number. This maro used to be used within the definition of \RoundUp; with
the xfp facilities the latter macro does not need it any more, but it continues to
be used in several other macros.

270 \def\Integer#1.#2??{#1}%

21

4 Labelling the graphical elements
While drawing any thing with the curve2e package, it might be necessary to
identify some graphical objects with some sort of “label”.5

Some commands such as \legenda (legend), \Zbox, and \Pbox have been
always used in the documentation of this package and its siblings; but we used
them in many other documents; therefore we thought it was useful to have them
available with the general user of curve2e.

Their commands follow the following syntax.

\Pbox(〈coordinates〉)[〈position〉]{〈formula〉}[〈dot diameter〉]〈* 〉<〈angle〉>
\Zbox(〈coordinates〉)[〈position〉]{〈formula〉}[〈dot diameter〉]
\legenda(〈coordinates〉){〈formula〉}

These commands have similar but different functionalities; the most general
one is \Pbox, while the others are simplified versions that have a simpler syntax,
and a subset of the \Pbox functionalities. While we describe the arguments of
\Pbox we emphasise the small differences with the other two commands.

〈coordinates〉 are the coordinates (explicit, or in vector form) of the reference point
of the “label”; for \legenda it is the lower left corner of the framed legend
contents. They are delimited with the usual matched parentheses, and their
default value is (0,0), therefore either users specify other coordinates, or
use the \put command to place the legend where they prefer.

〈position〉 is the optional position of the reference point relative to the “label”
contents: this means that if the “label” should be NE relative to the visible
(or invisible) dot it labels, the 〈position〉 codes should be tr (top and right);
the default 〈position〉 is cc so that the “label” is vertically and horizontally
centred at the reference point; actually these position parameters should al-
ways be specified if the dot diameter is positive (therefore visible), otherwise
the “label” and the dot overwrite each other.

〈formula〉 may be almost anything; 〈formula〉 means that the argument is typeset
in math mode; if some text is desired the argument must be surrounded by
a matched couple of dollar signs; in any case it is possible to enter text mode
by using a box (for example through a \hbox or a \parbox) so that actually
this mandatory argument may contain almost anything.

〈dot diameter〉 the dot diameter default value is positive; for \Zbox this parameter
equals 1\unitlength, while for \Pbox it equals 0.5ex; the user should be
careful in modifying this value; but if the dot diameter is set to zero, the dot
is absent and the \Zbox command behaves almost as an unframed legend.
The small difference is that \Zbox accepts a 〈position〉 parameter while the
\legend command does not.

5Do not confuse this identifier label with the \label command.

22

〈* 〉 is an optional star; if specified the “label” is framed with a visible border,
otherwise it is framed with an invisible one but with a blank gap that tries
to adjust its thickness so that the “label” is always at the same distance
from the reference point; if this reference point corresponds to a box corner
it thickness is reduced by approximately a factor equal to

√
0.5, in oder to

take into account the diagonal of the blank gap angle.

〈angle〉 is the rotation angle (in degrees) of the “label” about its reference point;
sometimes such “labels” have to be rotated 90° anticlockwise; sometimes
they need a positive or negative rotation angle in order to match the general
direction of the “labelled” object, be it an oblique line, an axis, or whatever.
We found it very useful also to label the cartesian axes, but also in other
situations. For example, in order to label the x axis the \Pbox command
might have the arrow tip coordinates for the reference point and have tr for
the 〈position〉; for the y axis, the reference point is again the arrow tip, and
the position would be again tr if the “label” sits on the left of the axis.

271 \providecommand\Pbox{}
272 \newlength\PbDim
273 \RenewDocumentCommand\Pbox{D(){0,0} O{cc} m O{0.5ex} s D<>{0}}{%
274 \put(#1){\rotatebox{#6}{\makebox(0,0){%
275 \settowidth\PbDim{#2}%
276 \edef\Rapp{\fpeval{\PbDim/{1ex}}}%
277 \fptest{\Rapp > 1.5}{\fboxsep=0.5ex}{\fboxsep=0.75ex}%
278 \IfBooleanTF{#5}{\fboxrule=0.4pt}{\fboxrule=0pt}%
279 \fptest{#4 = 0sp}%
280 {\makebox(0,0)[#2]{\fbox{$\relax#3\relax$}}}%
281 {\edef\Diam{\fpeval{(#4)/\unitlength}}%
282 \makebox(0,0){\circle*{\Diam}}%
283 \makebox(0,0)[#2]{\fbox{$\relax\mathsf#3\relax$}}%
284 }}}%
285 }\ignorespaces}
286
287 \providecommand\Zbox{}
288 \RenewDocumentCommand\Zbox{R(){0,0} O{cc} m O{1}}{%
289 \put(#1){\makebox(0,0)[#2]{\fboxrule=0pt\fboxsep=3pt\fbox{$#3$}}%
290 \makebox(0,0)[cc]{\circle*{#4}}}\ignorespaces}
291
292 \providecommand\legenda{}
293 \newbox\legendbox
294 \RenewDocumentCommand\legenda{ D(){0,0} m}{\put(#1){%
295 \setbox\legendbox\hbox{$\relax#2\relax$}%
296 \edef\@tempA{\fpeval{(\wd\legendbox + 3\p@)/\unitlength}}%
297 \edef\@tempB{\fpeval{(\ht\legendbox+\dp\legendbox+3\p@)/\unitlength}}%
298 \framebox(\@tempA,\@tempB){\box\legendbox}}\ignorespaces}
299

With the above labelling facilities and with use of the xfp functionalities it
is not difficult to create diagrams with linear or logarithmic axes. In effects the
graphpaper class uses these labelling macros and several other ones.

23

5 Math operations on fractional operands
This is not the place to complain about the fact that all programs of the TEX
system use only integer arithmetics; now, with the 2018 distribution of the modern
TEX system, package xfp is available: this package resorts in the background to
language LATEX 3; with this language now it is possible to compute fractional
number operations; the numbers are coded in decimal, not in binary, and it is
possible also to use numbers written as in computer science, that is as a fractional,
possibly signed, number followed by an expression that contains the exponent of 10
necessary to (ideally) move the fractional separator in one or the other direction
according to the sign of the exponent of 10; in other words the L3 library for
floating point calculations accepts such expressions as 123.456, 0.12345e3, and
12345e-3, and any other equivalent expression. If the first number is integer, it
assumes that the decimal separator is to the right of the rightmost digit of the
numerical string.

Floating point calculations may be done through the \fpeval L3 function with
a very simple syntax:

\fpeval{〈mathematical expression〉}

where 〈mathematical expression〉 can contain the usual algebraic operation sings,
‘+’ - * / ** ˆ and the function names of the most common algebraic, trigono-
metric, and transcendental functions; for direct and inverse trigonometric func-
tions it accepts arguments in radians and in sexagesimal degrees; it accepts the
group of rounding/truncating operators; it can perform several kinds of compar-
isons; as to now (Nov. 2019) the todo list includes the direct and inverse hyperbolic
functions. The mantissa length of the floating point operands amounts to 16 dec-
imal digits. Further details may be read in the documentations of the xfp and
interface3 packages, just by typing into a command line window the command
texdoc 〈document〉, where 〈document〉 is just the name of the above named files
without extension.

Furthermore we added a couple of interface macros with the internal L3 floating
point functions; \fptest and \fpdowhile. They have the following syntax:

\fptest{〈logical expression〉}{〈true code〉}{〈false code〉}
\fpdowhile{〈logical expression〉}{〈code〉}

The 〈logical expression〉 compares the values of any kind by means of the usual >,
=, and < operators that may be negated with the “not’ operator !; furthermore the
logical results of these comparisons may be acted upon with the “and” operator
&& and the “or” operator ||. The 〈true code〉, and 〈code〉 are executed if or while
the 〈logical expression〉 is true, while the 〈false code〉 is executed if the 〈logical
expression〉 is false

Before the availability of the xfp package, it was necessary to fake fractional
number computations by means of the native e-TEX commands \dimexpr, i.e. to
multiply each fractional number by the unit \p@ (1 pt) so as to get a length; op-
erate on such lengths, and then stripping off the ‘pt’ component from the result;

24

very error prone and with less precision as the one that the modern decimal float-
ing point calculations can do. Of course it is not so important to use fractional
numbers with more that 5 or 6 fractional digits, because the other TEX and LATEX
macros cannot handle them, but it is very convenient to have simpler and more
readable code. We therefore switched to the new floating point functionality, even
if this maintains the curve2e functionality, but renders this package unusable with
older LATEX kernel installations. It has already been explained that the input of
this up-to-date version of curve2e is aborted if the xfp package is not available,
but the previous version 1.61 version is loaded in its place; very little functionality
is lost, but, evidently, this new version performs in a better way.

5.1 The division macro
The most important macro is the division of two fractional numbers; we seek a
macro that gets dividend and divisor as fractional numbers and saves their ratio
in a macro; this is done in a simple way with the following code.

300 \def\DividE#1by#2to#3{\edef#3{\fpeval{#1 / #2}}}

In order to avoid problems with divisions by zero, or with numbers that yield
results too large to be used as multipliers of lengths, it would be preferable that
the above code be preceded or followed by some tests and possible messages.
Actually we decided to avoid such tests and messages, because the internal L3
functions already provide some. This was done in the previous versions of this
package, when the \fpeval L3 function was not available.

Notice that operands #1 and #2 may be integer numbers or fractional, or mixed
numbers. They may be also dimensions, but while dimensions in printer points
(72.27pt=1in) are handled as assumed, when different units are used, the length
must be enclosed in parentheses:

%\DividE(1mm)by(3mm) to\result
%

yields correctly \result=0.33333333. Without parentheses the result is unpre-
dictable.

For backwards compatibility we need an alias.
301 \let\DivideFN\DividE

We do the same in order to multiply two integer o fractional numbers held in
the first two arguments and the third argument is a definable token that will hold
the result of multiplication in the form of a fractional number, possibly with a non
null fractional part; a null fractional part is stripped away

302 \def\MultiplY#1by#2to#3{\edef#3{\fpeval{#1 * #2}}}\relax
303 \let\MultiplyFN\MultiplY

but with multiplication it is better to avoid computations with lengths.
The next macro uses the \fpeval macro to get the numerical value of a measure

in points. One has to call \Numero with a control sequence and a dimension, with
the following syntax; the dimension value in points is assigned to the control
sequence.

25

\Numero〈control sequence〉〈dimension〉

304 \unless\ifdefined\Numero
305 \def\Numero#1#2{\edef#1{\fpeval{round(#2,6)}}\ignorespaces}%
306 \fi

The numerical value is rounded to 6 fractional digits that are more than sufficient
for the graphical actions performed by curve2e.

The \ifdefined primitive command is provided by the e-TEX extension of the
typesetting engine; the test does not create any hash table entry; it is a different
way than the \ifx\csname...\endcsname test, because the latter first possibly
creates a macro meaning \relax then executes the test; therefore an undefined
macro name is always defined to mean \relax.

5.2 Trigonometric functions
We now start with trigonometric functions. In previous versions of this package
we defined the macros \SinOf, \CosOf and \TanOf (\CotOf did not appear so
essential) by means of the parametric formulas that require the knowledge of
the tangent of the half angle. We wanted, and still want, to specify the angles
in sexagesimal degrees, not in radians, so that accurate reductions to the main
quadrants are possible. The bisection formulas are

sin θ = 2
cot x + tan x

cos θ = cot x − tan x

cot x + tan x

tan θ = 2
cot x − tan x

where
x = θ/114.591559

is the half angle in degrees converted to radians.
But now, in this new version, the availability of the floating point computations

with the specific L3 library makes all the above superfluous; actually the above
approach gave good results but it was cumbersome and limited by the fixed radix
computations of the TEX system programs.

Matter of facts, we compared the results (with 6 fractional digits) the computa-
tions executed with the sind function name, in order to use the angles in degrees,
and a table of trigonometric functions with the same number of fractional digits,
and we did not find any difference, not even one unit on the sixth decimal digit.
Probably the \fpeval computations, without rounding before the sixteenth sig-
nificant digit, are much more accurate, but it is useless to have a better accuracy
when the other TEX and LATEX macros would not be able to exploit them.

Having available such powerful instrument, even the tangent appears to be of
little use for the kind of computations that are supposed to be required in this
package.

26

The codes for the computation of \SinOf and \CosOf of the angle in degrees
is now therefore the following

307 \def\SinOf#1to#2{\edef#2{\fpeval{round(sind#1,6)}}}\relax
308 \def\CosOf#1to#2{\edef#2{\fpeval{round(cosd#1,6)}}}\relax

Sometimes the argument of a complex number is necessary; therefore with
macro \ArgOfVect we calculate the four quadrant arctangent (in degrees) of the
given vector taking into account the sings of the vector components. We use the
xfp atand with two arguments, so that it automatically takes into account all the
signs for determining the argument of vector x, y by giving the values x and y in
the proper order to the function atan:

if x + iy = Meiφ then φ = \fpeval{atand(y, x)}

The \ArgOfVect macro receives on input a vector and determines its four quadrant
argument; it only checks if both vector components are zero, because in this case
nothing is done, and the argument is assigned the value zero.

309 \def\ArgOfVect#1to#2{\GetCoord(#1){\t@X}{\t@Y}%
310 \fptest{\t@X=\z@ && \t@Y=\z@}{\edef#2{0}%
311 \PackageWarning{curve2e}{Null vector}{Check your data\MessageBreak
312 Computations go on, but the results may be meaningless}}{%
313 \edef#2{\fpeval{round(atand(\t@Y,\t@X),6)}}}\ignorespaces}

Since the argument of a null vector is meaningless, we set it to zero in case that
input data refer to such a null vector. Computations go on anyway, but the results
may be meaningless; such strange results are an indications that some controls on
the code should be done by the user.

It is worth examining the following table, where the angles of nine vectors 45◦

degrees apart from one another are computed from this macro.

Vector 0,0 1,0 1,1 0,1 -1,1 -1,0 -1,-1 0,-1 1,-1
Angle 0 0 45 90 135 180 -135 -90 -45

Real computations with the \ArgOfVect macro produce those very numbers with-
out the need of rounding; \fpeval produces all trimming of lagging zeros and
rounding by itself.

5.3 Arcs and curves preliminary information
We would like to define now a macro for drawing circular arcs of any radius and
any angular aperture; the macro should require the arc center, the arc starting
point and the angular aperture. The arc has its reference point in its center,
therefore it does not need to be put in place by the command \put; nevertheless
if \put is used, it may displace the arc into another position.

The command should have the following syntax:

\Arc(〈center〉)(〈starting point〉){〈angle〉}

which is totally equivalent to:

27

\put(〈center〉){〈\Arc(0,0)(〈starting point〉){〈angle〉}〉}

If the 〈angle〉, i.e. the arc angular aperture, is positive the arc runs counterclock-
wise from the starting point; clockwise if it is negative. Notice that since the
〈starting point〉 is relative to the 〈center〉 point, its polar coordinates are very
convenient, since they become (〈〈start angle〉:〈radius〉〉), where the 〈start angle〉
is relative to the arc center. Therefore you can think about a syntax such as this
one:

\Arc(〈〈center〉〉)(〈start angle:radius〉){〈angle〉}

The difference between the pict2e \arc definition consists in a very different
syntax:

\arc[〈start angle〉,〈end angle〉]{〈radius〉}

and the center is assumed to be at the coordinate established with a required \put
command; moreover the difference in specifying angles is that 〈end angle〉 equals
the sum of 〈start angle〉 and 〈angle〉. With the definition of this curve2e package
use of a \put command is not prohibited, but it may be used for fine tuning the
arc position by means of a simple displacement; moreover the 〈starting point〉 may
be specified with polar coordinates (that are relative to the arc center).

It’s necessary to determine the end point and the control points of the Bézier
spline(s) that make up the circular arc.

The end point is obtained from the rotation of the starting point around the
center; but the pict2e command \pIIe@rotate is such that the pivoting point
appears to be non relocatable. It is therefore necessary to resort to low level
TEX commands and the defined trigonometric functions and a set of macros that
operate on complex numbers used as vector roto-amplification operators.

5.4 Complex number macros
In this package complex number is a vague phrase; it may be used in the math-
ematical sense of an ordered pair of real numbers; it can be viewed as a vector
joining the origin of the coordinate axes to the coordinates indicated by the or-
dered pair; it can be interpreted as a roto-amplification operator that scales its
operand and rotates it about a pivot point; besides the usual conventional repre-
sentation used by the mathematicians where the ordered pair is enclosed in round
parentheses (which is in perfect agreement with the standard code used by the
picture environment) there is the other conventional representation used by the
engineers that stresses the roto-amplification nature of a complex number:

(x, y) = x + jy = Mejθ

Even the imaginary unit is indicated with i by mathematicians and with j by
engineers. In spite of these differences, such objects, the complex numbers, are
used without any problem by both mathematicians and engineers.

The important point is that these objects can be summed, subtracted, multi-
plied, divided, raised to any power (integer, fractional, positive or negative), be

28

the argument of transcendental functions according to rules that are agreed upon
by everybody. We do not need all these properties, but we need some and we must
create the suitable macros for doing some of these operations.

In facts we need macros for summing, subtracting, multiplying, dividing com-
plex numbers, for determining their directions (unit vectors or versors); a unit
vector is the complex number divided by its magnitude so that the result is the
cartesian or polar form of the Euler’s formula

ejϕ = cos ϕ + j sin ϕ

The magnitude of a vector is determined by taking the positive square root of
the sum of the squared real and imaginary parts (often called Pitagorean sum);
see further on.

It’s better to represent each complex number with one control sequence; this
implies frequent assembling and disassembling the pair of real numbers that make
up a complex number. These real components are assembled into the defining
control sequence as a couple of coordinates, i.e. two comma separated integer or
fractional signed decimal numbers.

For assembling two real numbers into a complex number we use the following
elementary macro:

314 \def\MakeVectorFrom#1#2to#3{\edef#3{#1,#2}\ignorespaces}%

Another elementary macro copies a complex number into another one:
315 \def\CopyVect#1to#2{\edef#2{#1}\ignorespaces}%

The magnitude is determined with the macro \ModOfVect with delimited argu-
ments; as usual it is assumed that the results are retrieved by means of control
sequences, not used directly.

In the preceding version of package curve2e the magnitude M was determined
by taking the moduli of the real and imaginary parts, by changing their signs if
necessary; the larger component was then taken as the reference one, so that, if a
is larger than b, the square root of the sum of their squares is computed as such:

M =
√

a2 + b2 = |a|
√

1 + (b/a)2

In this way the radicand never exceeds 2 and it was quite easy to get its square
root by means of the Newton iterative process; due to the quadratic convergence,
five iterations were more than sufficient. When one of the components was zero,
the Newton iterative process was skipped.

With the availability of the xfp package and its floating point algorithms it
is much easier to compute the magnitude of a complex number; since these algo-
rithms allow to use very large numbers, it is not necessary to normalise the complex
number components to the largest one; therefore the code is much simpler than
the one used for implementing the Newton method in the previous versions of this
package.

316 \def\ModOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
317 \edef#2{\fpeval{round(sqrt(\t@X*\t@X + \t@Y*\t@Y),6)}}%
318 \ignorespaces}%

29

Since the macro for determining the magnitude of a vector is available, we can
now normalise the vector to its magnitude, therefore getting the Cartesian form of
the direction vector. If by any chance the direction of the null vector is requested,
the output is again the null vector, without normalisation.

319 \def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
320 \ModOfVect#1to\@tempa
321 \fptest{\@tempa=\z@}{}{%
322 \edef\t@X{\fpeval{round(\t@X/\@tempa,6)}}%
323 \edef\t@Y{\fpeval{round(\t@Y/\@tempa,6)}}%
324 }\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

A cumulative macro uses the above ones to determine with one call both the
magnitude and the direction of a complex number. The first argument is the input
complex number, the second its magnitude, and the third is again a complex
number normalised to unit magnitude (unless the input was the null complex
number); remember always that output quantities must be specified with control
sequences to be used at a later time.

325 \def\ModAndDirOfVect#1to#2and#3{%
326 \ModOfVect#1to#2%
327 \DirOfVect#1to#3\ignorespaces}%

The next macro computes the magnitude and the direction of the difference
of two complex numbers; the first input argument is the minuend, the sec-
ond is the subtrahend; the output quantities are the third argument con-
taining the magnitude of the difference and the fourth is the direction of
the difference. Please notice the difference between \ModAndDirOfVect and
\DistanceAndDirOfVect; the former computes the modulus and the direction
of a complex number, that is a vector with its tail in the origin of the axes;
the latter measures the length of the difference of two complex numbers; in
a way \ModAndDirOfVect 〈vector〉 to 〈macro〉 and 〈versor〉 produces the same
result as \DistanceAndDirOfVect 〈vector〉 minus {0,0} to 〈macro〉 and 〈ver-
sor〉. Actually \DistanceAndDirOfVect yields the distance of two complex num-
bers and the direction of their difference. The service macro \SubVect executes
the difference of two complex numbers and is described further on; its code im-
plements just this statement.

328 \def\DistanceAndDirOfVect#1minus#2to#3and#4{%
329 \SubVect#2from#1to\@tempa
330 \ModAndDirOfVect\@tempa to#3and#4\ignorespaces}%

We now have two macros intended to fetch just the real or, respectively, the
imaginary part of the input complex number.

331 \def\XpartOfVect#1to#2{%
332 \GetCoord(#1)#2\@tempa\ignorespaces}%
333 %
334 \def\YpartOfVect#1to#2{%
335 \GetCoord(#1)\@tempa#2\ignorespaces}%

With the next macro we create a direction vector (second argument) from a given
angle (first argument, in degrees).

30

336 \def\DirFromAngle#1to#2{%
337 \edef\t@X{\fpeval{round(cosd#1,6)}}%
338 \edef\t@Y{\fpeval{round(sind#1,6)}}%
339 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

Sometimes it is necessary to scale (multiply) a vector by an arbitrary real
factor; this implies scaling both the real and imaginary part of the input given
vector.

340 \def\ScaleVect#1by#2to#3{\GetCoord(#1)\t@X\t@Y
341 \edef\t@X{\fpeval{#2 * \t@X}}%
342 \edef\t@Y{\fpeval{#2 * \t@Y}}%
343 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

Again, sometimes it is necessary to reverse the direction of rotation; this implies
changing the sign of the imaginary part of a given complex number; this operation
produces the complex conjugate of the given number.

344 \def\ConjVect#1to#2{\GetCoord(#1)\t@X\t@Y
345 \edef\t@Y{-\t@Y}%
346 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

With all the low level elementary operations we can now proceed to the defi-
nitions of the binary operations on complex numbers. We start with the addition:

347 \def\AddVect#1and#2to#3{\GetCoord(#1)\tu@X\tu@Y
348 \GetCoord(#2)\td@X\td@Y
349 \edef\t@X{\fpeval{\tu@X + \td@X}}%
350 \edef\t@Y{\fpeval{\tu@Y + \td@Y}}%
351 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

Then the subtraction:
352 \def\SubVect#1from#2to#3{\GetCoord(#1)\tu@X\tu@Y
353 \GetCoord(#2)\td@X\td@Y
354 \edef\t@X{\fpeval{\td@X - \tu@X}}%
355 \edef\t@Y{\fpeval{\td@Y - \tu@Y}}%
356 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

For the multiplication we need to split the operation according to the fact
that we want to multiply by the second operand or by the complex conjugate of
the second operand; it would be nice if we could use the usual postfixed asterisk
notation for the complex conjugate, but in the previous versions of this package
we could not find a simple means for doing so. Therefore the previous version
contained a definition of the \MultVect macro that followed a simple syntax with
an optional asterisk prefixed to the second operand. Its syntax, therefore, allowed
the following two forms:

\MultVect〈first factor〉 by 〈second factor〉 to 〈output macro〉
\MultVect〈first factor〉 by ⋆ 〈second factor〉 to 〈output macro〉

With the availability of the xparse package and its special argument descrip-
tors for the arguments, we were able to define a different macro, \Multvect, with
both optional positions for the asterisk: after and before; its syntax allows the
following four forms:

31

\Multvect{〈first factor〉}{〈second factor〉}〈output macro〉
\Multvect{〈first factor〉}⋆{〈second factor〉}〈output macro〉
\Multvect{〈first factor〉}{〈second factor〉}⋆〈output macro〉
\Multvect{〈first factor〉}⋆{〈second factor〉}〈output macro〉
\Multvect{〈first factor〉}⋆{〈second factor〉}⋆〈output macro〉

Nevertheless we maintain a sort of interface between the old syntax and the
new one, so that the two old forms can be mapped to two suitable forms of the
new syntax. Old documents are still compilable; users who got used to the old
syntax can maintain their habits.

First we define the new macro: it receives the three arguments, the first two as
balanced texts; the last one must always be a macro, therefore a single (complex)
token that does not require braces, even if it is not forbidden to use them. Asterisks
are optional. The input arguments are transformed into couples of argument and
modulus; this makes multiplication much simpler as the output modulus is just the
product of the input moduli, while the output argument is just the sum of input
arguments; eventually it is necessary to transform this polar version of the result
into an ordered couple of cartesian values to be assigned to the output macro.
In order to maintain the single macros pretty simple we need a couple of service
macros and a named counter. We use \ModOfVect previously defined, and a new
macro \ModAndAngleOfVect with the following syntax:

\ModAndAngleOfVect〈input vector〉 to 〈output modulus〉 and 〈output angle in
degrees〉

The output quantities are always macros, so they do not need balanced bracing;
angles in degrees are always preferred because, in case of necessity, they are easy
to reduce to the range −180◦ < α ≤ +180◦.

357 \def\ModAndAngleOfVect#1to#2and#3{\ModOfVect#1to#2\relax
358 \ArgOfVect#1to#3\ignorespaces}

We name a counter in the upper range accessible with all the modern three type-
setting engines, pdfLaTeX, LuaLaTeX and XeLaTeX.

359 \newcount\MV@C

This TEX counter definition uses the property of modern typesetting engines that
use the εTEX extensions, that can define a very large number of counters.

Now comes the real macro6:
360 \NewDocumentCommand\Multvect{m s m s m}{%
361 \MV@C=0
362 \ModAndAngleOfVect#1to\MV@uM and\MV@uA
363 \ModAndAngleOfVect#3to\MV@dM and\MV@dA
364 \IfBooleanT{#2}{\MV@C=1}\relax
365 \IfBooleanT{#4}{\MV@C=1}\relax

6A warm thank-you to Enrico Gregorio, who kindly attracted my attention on the necessity
of braces when using this kind of macro; being used to the syntax with delimited arguments I
had taken the bad habit of avoiding braces. Braces are very important, but the syntax of the
original TEX language, that did not have available the L3 one, spoiled me with the abuse of
delimited arguments.

32

366 \unless\ifnum\MV@C=0\edef\MV@dA{-\MV@dA}\fi
367 \edef\MV@rM{\fpeval{round((\MV@uM * \MV@dM),6)}}%
368 \edef\MV@rA{\fpeval{round((\MV@uA + \MV@dA),6)}}%
369 \GetCoord(\MV@rA:\MV@rM)\t@X\t@Y
370 \MakeVectorFrom\t@X\t@Y to#5}

The macro to remain backward compatible, reduce to two simple macros that
take the input delimited arguments and passes them in braced form to the above
general macro:

371 \def\MultVect#1by{\@ifstar{\let\MV@c\@ne\@MultVect#1by}%
372 {\let\MV@c\empty\@MultVect#1by}}
373
374 \def\@MultVect#1by#2to#3{%
375 \unless\ifx\MV@c\empty\Multvect{#1}{#2}*{#3}\else
376 \Multvect{#1}{#2}{#3}\fi}

Testing of both the new and the old macros shows that they behave as expected,
although, using real numbers for trigonometric functions, some small rounding unit
on the sixth decimal digit still remains; nothing to worry about with a package
used for drawing.

The division of two complex numbers implies scaling down the dividend by
the magnitude of the divisor and by rotating the dividend scaled vector by the
conjugate versor of the divisor:

N⃗

D⃗
= N⃗

Mu⃗
= N⃗

M
u⃗⋆

therefore:
377 \def\DivVect#1by#2to#3{\Divvect{#1}{#2}{#3}}
378
379 \NewDocumentCommand\Divvect{ m m m }{%
380 \ModAndDirOfVect#2to\@Mod and\@Dir
381 \edef\@Mod{\fpeval{1 / \@Mod}}%
382 \ConjVect\@Dir to\@Dir
383 \ScaleVect#1by\@Mod to\@tempa
384 \Multvect{\@tempa}{\@Dir}#3\ignorespaces}%

Macros \DivVect and \Divvect are almost equivalent; the second is possibly
slightly more robust. They match the corresponding macros for multiplying two
vectors.

5.5 Arcs and curved vectors
We are now in the position of really doing graphic work.

5.5.1 Arcs

We start with tracing a circular arc of arbitrary center, arbitrary starting point
and arbitrary aperture; the first macro checks the aperture; if this is not zero it
actually proceeds with the necessary computations, otherwise it does nothing.

33

385 \def\Arc(#1)(#2)#3{\begingroup
386 \@tdA=#3\p@
387 \unless\ifdim\@tdA=\z@
388 \@Arc(#1)(#2)%
389 \fi
390 \endgroup\ignorespaces}%

The aperture is already memorised in \@tdA; the \@Arc macro receives the center
coordinates in the first argument and the coordinates of the starting point in the
second argument.

391 \def\@Arc(#1)(#2){%
392 \ifdim\@tdA>\z@
393 \let\Segno+%
394 \else
395 \@tdA=-\@tdA \let\Segno-%
396 \fi

The rotation angle sign is memorised in \Segno and \@tdA now contains the
absolute value of the arc aperture.

If the rotation angle is larger than 360◦ a message is issued that informs the
user that the angle will be reduced modulo 360◦; this operation is performed by
successive subtractions rather than with modular arithmetics on the assumption
that in general one subtraction suffices.

397 \Numero\@gradi\@tdA
398 \ifdim\@tdA>360\p@
399 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
400 and gets reduced\MessageBreak%
401 to the range 0--360 taking the sign into consideration}%
402 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
403 \fi

Now the radius is determined and the drawing point is moved to the starting point.
404 \SubVect#2from#1to\@V \ModOfVect\@V to\@Raggio
405 \CopyVect#2to\@pPun
406 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY

From now on it’s better to define a new macro that will be used also in the subse-
quent macros that draw arcs; here we already have the starting point coordinates
and the angle to draw the arc, therefore we just call the new macro, stroke the
line and exit.

407 \@@Arc\strokepath\ignorespaces}%

And the new macro \@@Arc starts with moving the drawing point to the first
point and does everything needed for drawing the requested arc, except stroking
it; we leave the \strokepath command to the completion of the calling macro
and nobody forbids to use the \@@Arc macro for other purposes.

408 \def\@@Arc{\pIIe@moveto{\@pPunX\unitlength}{\@pPunY\unitlength}%

If the aperture is larger than 180◦ it traces a semicircle in the right direction and
correspondingly reduces the overall aperture.

409 \ifdim\@tdA>180\p@

34

410 \advance\@tdA-180\p@
411 \Numero\@gradi\@tdA
412 \SubVect\@pPun from\@Cent to\@V
413 \AddVect\@V and\@Cent to\@sPun
414 \Multvect{\@V}{0,-1.3333333}\@V
415 \if\Segno-\ScaleVect\@V by-1to\@V\fi
416 \AddVect\@pPun and\@V to\@pcPun
417 \AddVect\@sPun and\@V to\@scPun
418 \GetCoord(\@pcPun)\@pcPunX\@pcPunY
419 \GetCoord(\@scPun)\@scPunX\@scPunY
420 \GetCoord(\@sPun)\@sPunX\@sPunY
421 \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
422 {\@scPunX\unitlength}{\@scPunY\unitlength}%
423 {\@sPunX\unitlength}{\@sPunY\unitlength}%
424 \CopyVect\@sPun to\@pPun
425 \fi

If the remaining aperture is not zero it continues tracing the rest of the arc. Here
we need the extrema of the arc and the coordinates of the control points of the
Bézier cubic spline that traces the arc. The control points lay on the perpendicular
to the vectors that join the arc center to the starting and end points respectively.

With reference to figure 11 of the user manual curve2e-manual.pdf file, the
points P1 and P2 are the arc end-points; C1 and C2 are the Bézier-spline control-
points; P is the arc mid-point, that should be distant from the center of the arc
the same as P1 and P2. Choosing a convenient orientation of the arc relative to
the coordinate axes, the coordinates of these five points are:

P1 = (−R sin θ, 0)
P2 = (R sin θ, 0)
C1 = (−R sin θ + K cos θ, K sin θ)
C2 = (R sin θ − K cos θ, K sin θ)
P = (0, R(1 − cos θ))

The Bézier cubic spline interpolating the end and mid points is given by the
parametric equation:

P = P1(1 − t)3 + C13(1 − t)2t + C23(1 − t)t2 + P2t3

where the mid point is obtained for t = 0.5; the four coefficients then become
1/8, 3/8, 3/8, 1/8 and the only unknown remains K. Solving for K we obtain the
formula

K = 4
3

1 − cos θ

sin θ
R = 4

3
1 − cos θ

sin2 θ
s (1)

where θ is half the arc aperture, R is its radius, and s is half the arc chord.
426 \ifdim\@tdA>\z@
427 \DirFromAngle\@gradi to\@Dir \if\Segno-\ConjVect\@Dir to\@Dir \fi
428 \SubVect\@Cent from\@pPun to\@V
429 \Multvect{\@V}{\@Dir}\@V

35

430 \AddVect\@Cent and\@V to\@sPun
431 \@tdA=.5\@tdA \Numero\@gradi\@tdA
432 \DirFromAngle\@gradi to\@Phimezzi
433 \GetCoord(\@Phimezzi)\@cosphimezzi\@sinphimezzi
434 \@tdB=1.3333333\p@ \@tdB=\@Raggio\@tdB
435 \@tdC=\p@ \advance\@tdC -\@cosphimezzi\p@ \Numero\@tempa\@tdC
436 \@tdB=\@tempa\@tdB
437 \DividE\@tdB by\@sinphimezzi\p@ to\@cZ
438 \ScaleVect\@Phimezzi by\@cZ to\@Phimezzi
439 \ConjVect\@Phimezzi to\@mPhimezzi
440 \if\Segno-%
441 \let\@tempa\@Phimezzi
442 \let\@Phimezzi\@mPhimezzi
443 \let\@mPhimezzi\@tempa
444 \fi
445 \SubVect\@sPun from\@pPun to\@V
446 \DirOfVect\@V to\@V
447 \Multvect{\@Phimezzi}{\@V}\@Phimezzi
448 \AddVect\@sPun and\@Phimezzi to\@scPun
449 \ScaleVect\@V by-1to\@V
450 \Multvect{\@mPhimezzi}{\@V}\@mPhimezzi
451 \AddVect\@pPun and\@mPhimezzi to\@pcPun
452 \GetCoord(\@pcPun)\@pcPunX\@pcPunY
453 \GetCoord(\@scPun)\@scPunX\@scPunY
454 \GetCoord(\@sPun)\@sPunX\@sPunY
455 \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
456 {\@scPunX\unitlength}{\@scPunY\unitlength}%
457 {\@sPunX\unitlength}{\@sPunY\unitlength}%
458 \fi}

5.5.2 Arc vectors

We exploit much of the above definitions for the \Arc macro for drawing circu-
lar arcs with an arrow at one or both ends; the first macro \VerctorArc draws
an arrow at the ending point of the arc; the second macro \VectorARC (alias
\VVectorArc) draws arrows at both ends; the arrows tips have the same shape as
those for vectors; actually they are drawn by putting a vector of zero length at
the proper arc end(s), therefore they are styled as traditional LATEX or PostScript
arrows according to the specific option to the pict2e package.

But the arc drawing done here shortens it so as not to overlap on the arrow
tip(s); the only arrow tip (or both tips) are also lightly tilted in order to avoid the
impression of a corner where the arc enters the arrow tip.

All these operations require a lot of “playing” with vector directions, but even
if the operations are numerous, they do not do anything else but: (a) determining
the end point and its direction; (b) determining the arrow length as an angular
quantity, i.e. the arc amplitude that must be subtracted from the total arc to
be drawn; (c) the direction of the arrow should correspond to the tangent to the
arc at the point where the arrow tip is attached; (d) tilting the arrow tip by

36

half its angular amplitude; (e) determining the resulting position and direction
of the arrow tip so as to draw a zero length vector; (f) possibly repeating the
same procedure for the other end of the arc; (g) shortening the total arc angular
amplitude by the amount of the arrow tip(s) already set, and finally (h) drawing
the circular arc that joins the starting point to the final arrow or one arrow to the
other one.

The calling macros are very similar to the \Arc macro initial one:
459 \def\VectorArc(#1)(#2)#3{\begingroup
460 \@tdA=#3\p@ \ifdim\@tdA=\z@\else
461 \@VArc(#1)(#2)%
462 \fi
463 \endgroup\ignorespaces}%
464 %
465 \def\VectorARC(#1)(#2)#3{\begingroup
466 \@tdA=#3\p@
467 \ifdim\@tdA=\z@\else
468 \@VARC(#1)(#2)%
469 \fi
470 \endgroup\ignorespaces}%
471 \let\VVectorArc\VectorARC

The single arrow tiped arc is defined with the following long macro where all
the described operations are performed more or less in the described succession;
probably the macro requires a little cleaning, but since it works fine we did not
try to optimise it for time or number of tokens. The final part of the macro is
almost identical to that of the plain arc; the beginning also is quite similar. The
central part is dedicated to the positioning of the arrow tip and to the necessary
calculations for determining the tip tilt and the reduction of the total arc length;
pay attention that the arrow length, stored in \@tdE is a real length, while the
radius stored in \@Raggio is just a multiple of the \unitlength, so that the
division (that yields a good angular approximation to the arrow length as seen
from the center of the arc) must be done with real lengths. The already defined
\@@Arc macro actually draws the curved vector stem without stroking it.

472 \def\@VArc(#1)(#2){%
473 \ifdim\@tdA>\z@
474 \let\Segno+%
475 \else
476 \@tdA=-\@tdA \let\Segno-%
477 \fi \Numero\@gradi\@tdA
478 \ifdim\@tdA>360\p@
479 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
480 and gets reduced\MessageBreak%
481 to the range 0--360 taking the sign into consideration}%
482 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
483 \fi
484 \SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
485 \@tdE=\pIIe@FAW\@wholewidth \@tdE=\pIIe@FAL\@tdE
486 \DividE\@tdE by \@Raggio\unitlength to\DeltaGradi

37

487 \@tdD=\DeltaGradi\p@
488 \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
489 \@tdD=\ifx\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
490 \DirFromAngle\@tempa to\@Dir
491 \Multvect{\@V}{\@Dir}\@sPun
492 \edef\@tempA{\ifx\Segno-\m@ne\else\@ne\fi}%
493 \Multvect{\@sPun}{0,\@tempA}\@vPun
494 \DirOfVect\@vPun to\@Dir
495 \AddVect\@sPun and #1 to \@sPun
496 \GetCoord(\@sPun)\@tdX\@tdY
497 \@tdD\ifx\Segno--\fi\DeltaGradi\p@
498 \@tdD=.5\@tdD \Numero\DeltaGradi\@tdD
499 \DirFromAngle\DeltaGradi to\@Dird
500 \Multvect{\@Dir}*{\@Dird}\@Dir%
501 \GetCoord(\@Dir)\@xnum\@ynum
502 \put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}%
503 \@tdE =\ifx\Segno--\fi\DeltaGradi\p@
504 \advance\@tdA -\@tdE \Numero\@gradi\@tdA
505 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
506 \@@Arc
507 \strokepath\ignorespaces}%

The macro for the arc terminated with arrow tips at both ends is again very
similar, but it is necessary to repeat the arrow tip positioning also at the starting
point. The \@@Arc macro draws the curved stem.

508 \def\@VARC(#1)(#2){%
509 \ifdim\@tdA>\z@
510 \let\Segno+%
511 \else
512 \@tdA=-\@tdA \let\Segno-%
513 \fi \Numero\@gradi\@tdA
514 \ifdim\@tdA>360\p@
515 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
516 and gets reduced\MessageBreak%
517 to the range 0--360 taking the sign into consideration}%
518 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
519 \fi
520 \SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
521 \@tdE=\pIIe@FAW\@wholewidth \@tdE=0.8\@tdE
522 \DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
523 \@tdD=\DeltaGradi\p@ \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
524 \@tdD=\if\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
525 \DirFromAngle\@tempa to\@Dir
526 \Multvect{\@V}{\@Dir}\@sPun% corrects the end point
527 \edef\@tempA{\if\Segno--\fi1}%
528 \Multvect{\@sPun}{0,\@tempA}\@vPun
529 \DirOfVect\@vPun to\@Dir
530 \AddVect\@sPun and #1 to \@sPun
531 \GetCoord(\@sPun)\@tdX\@tdY
532 \@tdD\if\Segno--\fi\DeltaGradi\p@

38

533 \@tdD=.5\@tdD \Numero\@tempB\@tdD
534 \DirFromAngle\@tempB to\@Dird
535 \Multvect{\@Dir}*{\@Dird}\@Dir
536 \GetCoord(\@Dir)\@xnum\@ynum
537 \put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}% end point arrow tip
538 \@tdE =\DeltaGradi\p@
539 \advance\@tdA -2\@tdE \Numero\@gradi\@tdA
540 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
541 \SubVect\@Cent from\@pPun to \@V
542 \edef\@tempa{\if\Segno-\else-\fi\@ne}%
543 \Multvect{\@V}{0,\@tempa}\@vPun
544 \@tdE\if\Segno--\fi\DeltaGradi\p@
545 \Numero\@tempB{0.5\@tdE}%
546 \DirFromAngle\@tempB to\@Dird
547 \Multvect{\@vPun}{\@Dird}\@vPun% corrects the starting point
548 \DirOfVect\@vPun to\@Dir\GetCoord(\@Dir)\@xnum\@ynum
549 \put(\@pPunX,\@pPunY){\vector(\@xnum,\@ynum){0}}% starting point arrow tip
550 \edef\@tempa{\if\Segno--\fi\DeltaGradi}%
551 \DirFromAngle\@tempa to \@Dir
552 \SubVect\@Cent from\@pPun to\@V
553 \Multvect{\@V}{\@Dir}\@V
554 \AddVect\@Cent and\@V to\@pPun
555 \GetCoord(\@pPun)\@pPunX\@pPunY
556 \@@Arc
557 \strokepath\ignorespaces}%

It must be understood that the curved vectors, the above circular arcs termi-
nated with an arrow tips at one or both ends, have a nice appearance only if the
arc radius is not too small, or, said in a different way, if the arrow tip angular
width does not exceed a maximum of a dozen degrees (and this is probably al-
ready too much); the tip does not get curved as the arc is, therefore there is not
a smooth transition from the curved stem and the straight arrow tip if this one is
large in comparison to the arc radius.

5.6 General curves
The most used method to draw curved lines with computer programs is to connect
several simple curved lines, general “arcs”, one to another generally maintaining
the same tangent at the junction. If the direction changes we are dealing with a
cusp.

The simple general arcs that are directly implemented in every program that
displays typeset documents, are those drawn with the parametric curves called
Béźier splines; given a sequence of points in the x, y plane, say P0, P1, P2, p3, . . .
(represented as coordinate pairs, i.e. by complex numbers), the most common

39

Bézier splines are the following ones:

B1 = P0(1 − t) + P1t (2)
B2 = P0(1 − t)2 + P12(1 − t)t + P2t2 (3)
B3 = P0(1 − t)3 + P13(1 − t)2t + P23(1 − t)t2 + P3t3 (4)

All these splines depend on parameter t; they have the property that for t = 0
each line starts at the first point, while for t = 1 they reach the last point; in each
case the generic point P on each curve takes off with a direction that points to
the next point, while it lands on the destination point with a direction coming
from the penultimate point; moreover, when t varies from 0 to 1, the curve arc is
completely contained within the convex hull formed by the polygon that has the
spline points as vertices.

Last but not least first order splines implement just straight lines and they
are out of question for what concerns maxima, minima, inflection points and the
like. Quadratic splines draw just parabolas, therefore they draw arcs that have the
concavity just on one side of the path; therefore no inflection points. Cubic splines
are extremely versatile and can draw lines with maxima, minima and inflection
points. Virtually a multi-arc curve may be drawn by a set of cubic splines as
well as a set of quadratic splines (fonts are a good example: Adobe Type 1 fonts
have their contours described by cubic splines, while TrueType fonts have their
contours described with quadratic splines; at naked eye it is impossible to notice
the difference).

Each program that processes the file to be displayed is capable of drawing first
order Bézier splines (segments) and third order Bézier splines, for no other reason,
at least, because they have to draw vector fonts whose contours are described by
Bézier splines; sometimes they have also the program commands to draw second
order Bézier splines, but not always these machine code routines are available
to the user for general use. For what concerns pdftex, xetex and luatex, they
have the user commands for straight lines and cubic arcs. At least with pdftex,
quadratic arcs must be simulated with a clever use of third order Bézier splines.

Notice that the LATEX 2ε environment picture by itself is capable of drawing
both cubic and quadratic Bézier splines as single arcs; but it resorts to “poor man”
solutions. The pict2e package removes all the old limitations and implements the
interface macros for sending the driver the necessary drawing information, includ-
ing the transformation from typographical points (72.27 pt/inch) to PostScript big
points (72 bp/inch). But for what concerns the quadratic spline it resorts to the
clever use of a cubic spline.

Therefore here we treat first the drawings that can be made with cubic splines;
then we describe the approach to quadratic splines.

5.7 Cubic splines
Now we define a macro for tracing a general, not necessarily circular, arc. This
macro resorts to a general triplet of macros with which it is possible to draw
almost anything. It traces a single Bézier spline from a first point where the

40

tangent direction is specified to a second point where again it is specified the
tangent direction. Actually this is a special (possibly useless) case where the
general \curve macro of pict2e could do the same or a better job. In any case. . .

558 \def\CurveBetween#1and#2WithDirs#3and#4{%
559 \StartCurveAt#1WithDir{#3}\relax
560 \CurveTo#2WithDir{#4}\CurveFinish\ignorespaces
561 }%

Actually the above macro is a special case of concatenation of the triplet formed
by macros \StartCurve, \CurveTo and\CurveFinish; the second macro can be
repeated an arbitrary number of times. In any case the directions specified with
the direction arguments the angle between the indicated tangent and the arc chord
may give raise to some little problems when they are very close to 90° in absolute
value. Some control is exercised on these values, but some tests might fail if the
angle derives from other calculations; this is a good place to use polar forms for
the direction vectors. The same comments apply also to the more general macro
\Curve,

The first macro initialises the drawing and the third one strokes it; the real
work is done by the second macro. The first macro initialises the drawing but
also memorises the starting direction; the second macro traces the current Bézier
arc reaching the destination point with the specified direction, but memorises this
direction as the one with which to start the next arc. The overall curve is then
always smooth because the various Bézier arcs join with continuous tangents. If
a cusp is desired it is necessary to change the memorised direction at the end of
the arc before the cusp and before the start of the next arc; this is better than
stroking the curve before the cusp and then starting another curve, because the
curve joining point at the cusp is not stroked with the same command, therefore
we get two superimposed curve terminations. To avoid this imperfection, we need
another small macro \ChangeDir to perform this task.

It is necessary to recall that the direction vectors point to the control points,
but they do not define the control points themselves; they are just directions,
or, even better, they are simply vectors with the desired direction; the macros
themselves provide to the normalisation and memorisation.

The next desirable feature would be to design a macro that accepts optional
node directions and computes the missing ones according to a suitable strategy.
We can think of many such strategies, but none seems to be generally applicable,
in the sense that one strategy might give good results, say, with sinusoids and
another one, say, with cardioids, but neither one is suitable for both cases.

For the moment we refrain from automatic direction computation, but we
design the general macro as if directions were optional.

Here we begin with the first initialising macro that receives with the first
argument the starting point and with the second argument the direction of the
tangent (not necessarily normalised to a unit vector)

562 \def\StartCurveAt#1WithDir#2{%
563 \begingroup
564 \GetCoord(#1)\@tempa\@tempb
565 \CopyVect\@tempa,\@tempb to\@Pzero

41

566 \pIIe@moveto{\@tempa\unitlength}{\@tempb\unitlength}%
567 \GetCoord(#2)\@tempa\@tempb
568 \CopyVect\@tempa,\@tempb to\@Dzero
569 \DirOfVect\@Dzero to\@Dzero
570 \ignorespaces}

And this re-initialises the direction to create a cusp:
571 \def\ChangeDir<#1>{%
572 \GetCoord(#1)\@tempa\@tempb
573 \CopyVect\@tempa,\@tempb to\@Dzero
574 \DirOfVect\@Dzero to\@Dzero
575 \ignorespaces}

The next macros are the finishing ones; the first strokes the whole curve, while
the second fills the (closed) curve with the default color; both close the group
that was opened with \StartCurve. The third macro is explained in a while; we
anticipate it is functional to chose between the first two macros when a star is
possibly used to switch between stroking and filling.

576 \def\CurveFinish{\strokepath\endgroup\ignorespaces}%
577 \def\FillCurve{\fillpath\endgroup\ignorespaces}
578 \def\CurveEnd{\fillstroke\endgroup\ignorespaces}

In order to draw the internal arcs it would be desirable to have a single macro
that, given the destination point, computes the control points that produce a cubic
Bézier spline that joins the starting point with the destination point in the best
possible way. The problem is strongly ill defined and has an infinity of solutions;
here we give two solutions: (a) a supposedly smart one that resorts to osculating
circles and requires only the direction at the destination point; and (b) a less smart
solution that requires the control points to be specified in a certain format.

We start with solution (b), \CbezierTo, the code of which is simpler than that
of solution (a); then we will produce the solution (a), \CurveTo, that will become
the main building block for a general path construction macro, \Curve.

The “näıve” macro \CBezierTo simply uses the previous point direction saved
in \@Dzero as a unit vector by the starting macro; specifies a destination point,
the distance of the first control point from the starting point, the destination
point direction that will save also for the next arc-drawing macro as a unit vector,
and the distance of the second control point from the destination point along this
last direction. Both distances must be positive possibly fractional numbers. The
syntax therefore is the following:

\CbezierTo〈end point〉WithDir〈direction〉AndDists〈K0〉And〈K1〉

where 〈end point〉 is a vector macro or a comma separated pair of values; again
〈direction〉 is another vector macro or a comma separated pair of values, that not
necessarily indicate a unit vector, since the macro provides to normalise it to unity;
〈K0〉 and 〈K1〉 are the distances of the control points from their respective node
points; they must be integers or fractional positive numbers. If 〈K1〉 is a number,
it must be enclosed in curly braces, while if it is a macro name (containing the
desired fractional or integer value) there is no need for braces.

42

This macro uses the input information in order to activate the internal pict2e
macro \pIIe@curveto with the proper arguments, and to save the final direction
into the same \@Dzero macro for successive use of other arc-drawing macros.

579 \def\CbezierTo#1WithDir#2AndDists#3And#4{%
580 \GetCoord(#1)\@tX\@tY \MakeVectorFrom\@tX\@tY to\@Puno
581 \GetCoord(#2)\@tX\@tY \MakeVectorFrom\@tX\@tY to \@Duno
582 \DirOfVect\@Duno to\@Duno
583 \ScaleVect\@Dzero by#3to\@Czero \AddVect\@Pzero and\@Czero to\@Czero
584 \ScaleVect\@Duno by-#4to \@Cuno \AddVect\@Puno and\@Cuno to \@Cuno
585 \GetCoord(\@Czero)\@XCzero\@YCzero
586 \GetCoord(\@Cuno)\@XCuno\@YCuno
587 \GetCoord(\@Puno)\@XPuno\@YPuno
588 \pIIe@curveto{\@XCzero\unitlength}{\@YCzero\unitlength}%
589 {\@XCuno\unitlength}{\@YCuno\unitlength}%
590 {\@XPuno\unitlength}{\@YPuno\unitlength}%
591 \CopyVect\@Puno to\@Pzero
592 \CopyVect\@Duno to\@Dzero
593 \ignorespaces}%

With this building block it is not difficult to set up a macro that draws a
Bézier arc between two given points, similarly to the other macro \CurveBetween
previously described and defined here:

594 \def\CbezierBetween#1And#2WithDirs#3And#4UsingDists#5And#6{%
595 \StartCurveAt#1WithDir{#3}\relax
596 \CbezierTo#2WithDir#4AndDists#5And{#6}\CurveFinish}

An example of use is shown in figure 13 of the user manual curve2e-manual.pdf
file; notice that the tangents at the end points are the same for the black curve
drawn with \CurveBetween and the five red curves drawn with \CbezierBetween;
the five red curves differ only for the distance of their control point C0 from the
starting point; the differences are remarkable and the topmost curve even presents
a slight inflection close to the end point. These effects cannot be obtained with
the “smarter” macro \CurveBetween. But certainly this simpler macro is more
difficult to use because the distances of the control points are difficult to estimate
and require a number of cut-and-try experiments.

The “smarter” curve macro comes next; it is supposed to determine the control
points for joining the previous point (initial node) with the specified direction to
the next point (final node) with another specified direction.

Since the control points are along the specified directions, it is necessary to
determine the distances from the adjacent curve nodes. This must work correctly
even if nodes and directions imply an inflection point somewhere along the arc.

The strategy we devised consists in determining each control point as if it were
the control point of a circular arc, precisely an arc of an osculating circle, i.e. a
circle tangent to the curve at that node. The ambiguity of the stated problem
may be solved by establishing that the chord of the osculating circle has the same
direction as the chord of the arc being drawn, and that the curve chord is divided
into two equal parts each of which should be interpreted as half the chord of the
osculating circle.

43

This makes the algorithm a little rigid; sometimes the path drawn is very
pleasant, while in other circumstances the determined curvatures are too large or
too small. We therefore add some optional information that lets us have some
control over the curvatures; the idea is based on the concept of tension, similar
but not identical to the one used in the drawing programs METAFONT and META-
POST. We add to the direction information, with which the control nodes of the
osculating circle arcs are determined, a scaling factor that should be intuitively
related to the tension of the arc (actually, since the tension of the ‘rope’ is high
when this parameter is low, probably a name such as ‘looseness’ would be better
suited): the smaller this number, the closer the arc resembles a straight line as a
rope subjected to a high tension; value zero is allowed, while a value of 4 is close
to “infinity” and turns a quarter circle into a line with an unusual loop; a value
of 2 turns a quarter circle almost into a polygonal line with rounded vertices .
Therefore these tension factors should be used only for fine tuning the arcs, not
when a path is drawn for the first time.

We devised a syntax for specifying direction and tensions:

〈direction;tension factors〉

where direction contains a pair of fractional numbers that not necessarily refer to
the components of a unit vector direction, but simply to a vector with the desired
orientation (polar form is OK); the information contained from the semicolon
(included) to the rest of the specification is optional; if it is present, the tension
factors is simply a comma separated pair of fractional or integer numbers that
represent respectively the tension at the starting or the ending node of a path arc.

We therefore need a macro to extract the mandatory and optional parts:
597 \def\@isTension#1;#2!!{\def\@tempA{#1}%
598 \def\@tempB{#2}\unless\ifx\@tempB\empty\strip@semicolon#2\fi}
599
600 \def\strip@semicolon#1;{\def\@tempB{#1}}

By changing the tension values we can achieve different results: see figure 14 in
the user manual curve2e-manual.pdf.

We use the formula we got for arcs (1), where the half chord is indicated with
s, and we derive the necessary distances:

K0 = 4
3s

1 − cos θ0

sin2 θ0
(5a)

K1 = 4
3s

1 − cos θ1

sin2 θ1
(5b)

We therefore start with getting the points and directions and calculating the
chord and its direction:

601 \def\CurveTo#1WithDir#2{%
602 \def\@Tuno{1}\def\@Tzero{1}\relax
603 \edef\@Puno{#1}\@isTension#2;!!%
604 \expandafter\DirOfVect\@tempA to\@Duno
605 \bgroup\unless\ifx\@tempB\empty\GetCoord(\@tempB)\@Tzero\@Tuno\fi
606 \DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord

44

Then we rotate everything about the starting point so as to bring the chord on
the real axis

607 \Multvect{\@Dzero}*{\@DirChord}\@Dpzero
608 \Multvect{\@Duno}*{\@DirChord}\@Dpuno
609 \GetCoord(\@Dpzero)\@DXpzero\@DYpzero
610 \GetCoord(\@Dpuno)\@DXpuno\@DYpuno
611 \DivideFN\@Chord by2 to\@semichord

The chord needs not be actually rotated because it suffices its length along the
real axis; the chord length is memorised in \@Chord and its half is saved in
\@semichord.

We now examine the various degenerate cases, when either tangent is perpen-
dicular or parallel to the chord. Notice that we are calculating the distances of the
control points from the adjacent nodes using the half chord length, not the full
length. We also distinguish between the computations relative to the arc starting
point and those relative to the end point. Notice that if the directions of two suc-
cessive nodes are identical, it is necessary to draw a line, not a third order spline7;
therefore it is necessary to make a suitable test that is more comfortable to do
after the chord has been rotated to be horizontal; in facts, if the two directions
are equal, the vertical components of the directions are both vanishing values;
probably, instead of testing with respect to zero, it might be advisable to test the
absolute value with respect to a small number such as, for example, “1.e-6.”

612 \fptest{\@DYpuno=0 && \@DYpzero=0}{\GetCoord(\@Puno)\@tX\@tY
613 \pIIe@lineto{\@tX\unitlength}{\@tY\unitlength}}%
614 {\ifdim\@DXpzero\p@=\z@
615 \@tdA=1.333333\p@
616 \Numero\@KCzero{\@semichord\@tdA}%
617 \fi
618 \ifdim\@DYpzero\p@=\z@
619 \@tdA=1.333333\p@
620 \Numero\@Kpzero{\@semichord\@tdA}%
621 \fi

The distances we are looking for are positive generally fractional numbers; so if the
components are negative, we take the absolute values. Eventually we determine
the absolute control point coordinates.

622 \unless\ifdim\@DXpzero\p@=\z@
623 \unless\ifdim\@DYpzero\p@=\z@
624 \edef\@CosDzero{\ifdim\@DXpzero\p@<\z@ -\fi\@DXpzero}%
625 \edef\@SinDzero{\ifdim\@DYpzero\p@<\z@ -\fi\@DYpzero}%
626 \@tdA=\@semichord\p@ \@tdA=1.333333\@tdA
627 \DividE\@tdA by\@SinDzero\p@ to \@KCzero
628 \@tdA=\dimexpr(\p@-\@CosDzero\p@)\relax
629 \DividE\@KCzero\@tdA by\@SinDzero\p@ to \@KCzero
630 \fi
631 \fi

7Many thanks to John Hillas who spotted this bug, that passed unnoticed for long time,
because it is a very unusual situation.

45

632 \MultiplyFN\@KCzero by \@Tzero to \@KCzero
633 \ScaleVect\@Dzero by\@KCzero to\@CPzero
634 \AddVect\@Pzero and\@CPzero to\@CPzero

We now repeat the calculations for the arc end point, taking into consideration
that the end point direction points outwards, so that in computing the end point
control point we have to take this fact into consideration by using a negative sign
for the distance; in this way the displacement of the control point from the end
point takes place in a backwards direction.

635 \ifdim\@DXpuno\p@=\z@
636 \@tdA=-1.333333\p@
637 \Numero\@KCuno{\@semichord\@tdA}%
638 \fi
639 \ifdim\@DYpuno\p@=\z@
640 \@tdA=-1.333333\p@
641 \Numero\@KCuno{\@semichord\@tdA}%
642 \fi
643 \unless\ifdim\@DXpuno\p@=\z@
644 \unless\ifdim\@DYpuno\p@=\z@
645 \edef\@CosDuno{\ifdim\@DXpuno\p@<\z@ -\fi\@DXpuno}%
646 \edef\@SinDuno{\ifdim\@DYpuno\p@<\z@ -\fi\@DYpuno}%
647 \@tdA=\@semichord\p@ \@tdA=-1.333333\@tdA
648 \DividE\@tdA by \@SinDuno\p@ to \@KCuno
649 \@tdA=\dimexpr(\p@-\@CosDuno\p@)\relax
650 \DividE\@KCuno\@tdA by\@SinDuno\p@ to \@KCuno
651 \fi
652 \fi
653 \MultiplyFN\@KCuno by \@Tuno to \@KCuno
654 \ScaleVect\@Duno by\@KCuno to\@CPuno
655 \AddVect\@Puno and\@CPuno to\@CPuno

Now we have the four points and we can instruct the internal pict2e macros to
do the path drawing.

656 \GetCoord(\@Puno)\@XPuno\@YPuno
657 \GetCoord(\@CPzero)\@XCPzero\@YCPzero
658 \GetCoord(\@CPuno)\@XCPuno\@YCPuno
659 \pIIe@curveto{\@XCPzero\unitlength}{\@YCPzero\unitlength}%
660 {\@XCPuno\unitlength}{\@YCPuno\unitlength}%
661 {\@XPuno\unitlength}{\@YPuno\unitlength}}\egroup

It does not have to stroke the curve because other Bézier splines might still be
added to the path. On the opposite it memorises the final point to be used as the
initial point of the next spline

662 \CopyVect\@Puno to\@Pzero
663 \CopyVect\@Duno to\@Dzero
664 \ignorespaces}%

We finally define the overall \Curve macro that has two flavours: starred
and unstarred; the former fills the curve path with the locally selected color,
while the latter just strokes the path. Both recursively examine an arbitrary list
of nodes and directions; node coordinates are grouped within round parentheses

46

while direction components are grouped within angle brackets. Before testing for
a possible star, this initial command kills any space or glue that might precede
it8 The first call of the macro initialises the drawing process and checks for the
next node and direction; if a second node is missing, it issues a warning message
and does not draw anything. It does not check for a change in direction, because
it would be meaningless at the beginning of a curve. The second macro defines
the path to the next point and checks for another node; if the next list item is a
square bracket delimited argument, it interprets it as a change of direction, while
if it is another parenthesis delimited argument it interprets it as a new node-
direction specification; if the node and direction list is terminated, it issues the
stroking or filling command through \CurveEnd, and exits the recursive process.
The \CurveEnd control sequence has a different meaning depending on the fact
that the main macro was starred or unstarred. The @ChangeDir macro is just an
interface to execute the regular \ChangeDir macro, but also for recursing again
by recalling \@Curve.

665 \def\Curve{\@killglue\@ifstar{\let\fillstroke\fillpath\Curve@}%
666 {\let\fillstroke\strokepath\Curve@}}
667
668 \def\Curve@(#1)<#2>{%
669 \StartCurveAt#1WithDir{#2}%
670 \@ifnextchar\lp@r\@Curve{%
671 \PackageWarning{curve2e}{%
672 Curve specifications must contain at least two nodes!\MessageBreak
673 Please, control your \string\Curve\space specifications\MessageBreak}}}
674 \def\@Curve(#1)<#2>{%
675 \CurveTo#1WithDir{#2}%
676 \@ifnextchar\lp@r\@Curve{%
677 \@ifnextchar[\@ChangeDir\CurveEnd}}
678 \def\@ChangeDir[#1]{\ChangeDir<#1>\@Curve}

As a concluding remark, please notice that the \Curve macro is certainly the
most comfortable to use, but it is sort of frozen in its possibilities. The user may
certainly use the \StartCurve, \CurveTo, \ChangeDir, and \CurveFinish or
\FillCurve for a more versatile set of drawing macros; evidently nobody forbids
to exploit the full power of the \cbezier original macro for cubic splines; we
made available macros \CbezierTo and the isolated arc macro \CbezierBetween
in order to use the general internal cubic Bézier splines in a more comfortable way.

As it can be seen in figure 15 of the curve2e-manual.pdf file, the two diagrams
should approximately represent a sine wave. With Bézier curves, that resort on
polynomials, it is impossible to represent a transcendental function, but it is only
possible to approximate it. It is evident that the approximation obtained with
full control on the control points requires less arcs and it is more accurate than
the approximation obtained with the recursive \Curve macro; this macro requires
almost two times as many pieces of information in order to minimise the effects
of the lack of control on the control points, and even with this added information
the macro approaches the sine wave with less accuracy. At the same time for

8Thanks to John Hillas who spotted the effects of this missing glue elimination.

47

many applications the \Curve recursive macro proves to be much easier to use
than single arcs drawn with the \CbezierBetween macro.

5.8 Quadratic splines
We want to create a recursive macro with the same properties as the above de-
scribed \Curve macro, but that uses quadratic splines; we call it \Qurve so that
the macro name initial letter reminds us of the nature of the splines being used.
For the rest they have an almost identical syntax; with quadratic splines it is
not possible to specify the distance of the control points from the extrema, since
quadratic splines have just one control point that must lay at the intersection of
the two tangent directions; therefore with quadratic splines the tangents at each
point cannot have the optional part that starts with a semicolon. The syntax,
therefore, is just:

\Qurve(〈first point〉)<〈direction〉>...(〈any point〉)<〈direction〉>...(〈last
point〉)<〈direction〉>

As with \Curve, also with \Qurve there is no limitation on the number of points,
except for the computer memory size; it is advisable not to use many arcs otherwise
it might become very difficult to find errors.

The first macros that set up the recursion are very similar to those we wrote
for \Curve:

679 \def\Qurve{\@ifstar{\let\fillstroke\fillpath\Qurve@}%
680 {\let\fillstroke\strokepath\Qurve@}}
681
682 \def\Qurve@(#1)<#2>{%
683 \StartCurveAt#1WithDir{#2}%
684 \@ifnextchar\lp@r\@Qurve{%
685 \PackageWarning{curve2e}{%
686 Quadratic curve specifications must contain at least
687 two nodes!\MessageBreak
688 Please, control your Qurve specifications\MessageBreak}}}%
689
690 \def\@Qurve(#1)<#2>{\QurveTo#1WithDir{#2}%
691 \@ifnextchar\lp@r\@Qurve{%
692 \@ifnextchar[\@ChangeQDir\CurveEnd}}%
693
694 \def\@ChangeQDir[#1]{\ChangeDir<#1>\@Qurve}%

Notice that in case of long paths it might be better to use the single macros
\StartCurveAt, \QurveTo, \ChangeDir and \CurveFinish (or \FillCurve),
with their respective syntax, in such a way that a long list of node-direction
specifications passed to \Qurve may be split into shorter input lines in order to
edit the input data in a more comfortable way.

The macro that does everything is \QurveTo. It starts by reading its arguments
received through the calling macro \@Qurve

695 \def\QurveTo#1WithDir#2{%

48

696 \edef\@Puno{#1}\DirOfVect#2to\@Duno\bgroup
697 \DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord

It verifies if \@Dpzero and \@Dpuno, the directions at the two extrema of the
arc, are parallel or anti-parallel by taking their “scalar” product (\@Dpzero times
\@Dpuno*); if the imaginary component of the scalar product vanishes the two
directions are parallel; in this case we produce an error message, but we continue
by skipping this arc destination point; evidently the drawing will not be the desired
one, but the job should not abort.

698 \Multvect{\@Dzero}*{\@Duno}\@Scalar
699 \YpartOfVect\@Scalar to \@YScalar
700 \ifdim\@YScalar\p@=\z@
701 \PackageWarning{curve2e}%
702 {Quadratic Bezier arcs cannot have their starting\MessageBreak
703 and ending directions parallel or antiparallel with\MessageBreak
704 each other. This arc is skipped and replaced with
705 a dotted line.\MessageBreak}%
706 \Dotline(\@Pzero)(\@Puno){2}\relax
707 \else

Otherwise we rotate everything about the starting point so as to bring the chord
on the real axis; we get also the components of the two directions that, we should
remember, are unit vectors, not generic vectors, although the user can use the
vector specifications that are more understandable to him/her:

708 \Multvect{\@Dzero}*{\@DirChord}\@Dpzero
709 \Multvect{\@Duno}*{\@DirChord}\@Dpuno
710 \GetCoord(\@Dpzero)\@DXpzero\@DYpzero
711 \GetCoord(\@Dpuno)\@DXpuno\@DYpuno

We check if the two directions point to the same half plane; this implies that these
rotated directions point to different sides of the chord vector; all this is equivalent
to the fact that the two direction Y components have opposite signs, so that their
product is strictly negative, while the two X components product is not negative.

712 \MultiplyFN\@DXpzero by\@DXpuno to\@XXD
713 \MultiplyFN\@DYpzero by\@DYpuno to\@YYD
714 \unless\ifdim\@YYD\p@<\z@\ifdim\@XXD\p@<\z@
715 \PackageWarning{curve2e}%
716 {Quadratic Bezier arcs cannot have inflection points\MessageBreak
717 Therefore the tangents to the starting and ending arc\MessageBreak
718 points cannot be directed to the same half plane.\MessageBreak
719 This arc is skipped and replaced by a dotted line\MessageBreak}%
720 \Dotline(\@Pzero)(\@Puno){2}\fi
721 \else

After these tests we should be in a “normal” situation. We first copy the ex-
panded input information into new macros that have more explicit names: macros
stating wit ‘S’ denote the sine of the direction angle, while those starting with
‘C’ denote the cosine of that angle. We will use these expanded definitions as we
know we are working with the actual values. These directions are those relative
to the arc chord.

49

722 \edef\@CDzero{\@DXpzero}\relax
723 \edef\@SDzero{\@DYpzero}\relax
724 \edef\@CDuno{\@DXpuno}\relax
725 \edef\@SDuno{\@DYpuno}\relax

Suppose we write the parametric equations of a straight line that departs from the
beginning of the chord with direction angle ϕ0 and the corresponding equation of
the straight line departing from the end of the chord (of length c) with direction
angle ϕ1. We have to find the coordinates of the intersection point of these two
straight lines.

t cos ϕ0 − s cos ϕ1 = c (6a)
t sin ϕ0 − s sin ϕ1 = 0 (6b)

The parameters t and s are just the running parameters; we have to solve those
simultaneous equations in the unknown variables t and s; these values let us
compute the coordinates of the intersection point:

XC = c cos ϕ0 sin ϕ1

sin ϕ0 cos ϕ1 − cos ϕ0 sin ϕ1
(7a)

YC = c sin ϕ0 sin ϕ1

sin ϕ0 cos ϕ1 − cos ϕ0 sin ϕ1
(7b)

Having performed the previous tests we are sure that the denominator is not
vanishing (direction are not parallel or anti-parallel) and that it lays at the same
side as the direction with angle ϕ0 with respect to the chord.

The coding then goes on like this:
726 \MultiplyFN\@SDzero by\@CDuno to\@tempA
727 \MultiplyFN\@SDuno by\@CDzero to\@tempB
728 \edef\@tempA{\strip@pt\dimexpr\@tempA\p@-\@tempB\p@}\relax
729 \@tdA=\@SDuno\p@ \@tdB=\@Chord\p@ \@tdC=\@tempA\p@
730 \edef\@tempC{\strip@pt\dimexpr \@tdA*\@tdB/\@tdC}\relax
731 \MultiplyFN\@tempC by\@CDzero to \@XC
732 \MultiplyFN\@tempC by\@SDzero to \@YC
733 \ModOfVect\@XC,\@YC to\@KC

Now we have the coordinates and the module of the intersection point vector taking
into account the rotation of the real axis; getting back to the original coordinates
before rotation, we get:

734 \ScaleVect\@Dzero by\@KC to\@CP
735 \AddVect\@Pzero and\@CP to\@CP
736 \GetCoord(\@Pzero)\@XPzero\@YPzero
737 \GetCoord(\@Puno)\@XPuno\@YPuno
738 \GetCoord(\@CP)\@XCP\@YCP

We have now the coordinates of the two end points of the quadratic arc and of
the single control point. Keeping in mind that the symbols P0, P1 and C denote
geometrical points but also their coordinates as ordered pairs of real numbers (i.e.
they are complex numbers) we have to determine the parameters of a cubic spline
that with suitable values gets simplifications in its parametric equation so that

50

it becomes a second degree function instead of a third degree one. It is possible,
even if it appears impossible that e cubic form becomes a quadratic one; we should
determine the values of Pa and Pb such that:

P0(1 − t)3 + 3Pa(1 − t)2t + 3Pb(1 − t)t2 + P1t3

is equivalent to
P0(1 − t)2 + 2C(1 − t)t + P1t2

It turns out that the solution is given by

Pa = C + (P0 − C)/3 and Pb = C + (P1 − C)/3 (8)

The transformations implied by equations (8) are performed by the following
macros already available from the pict2e package; we use them here with the
actual arguments used for this task:

739 \@ovxx=\@XPzero\unitlength \@ovyy=\@YPzero\unitlength
740 \@ovdx=\@XCP\unitlength \@ovdy=\@YCP\unitlength
741 \@xdim=\@XPuno\unitlength \@ydim=\@YPuno\unitlength
742 \pIIe@bezier@QtoC\@ovxx\@ovdx\@ovro
743 \pIIe@bezier@QtoC\@ovyy\@ovdy\@ovri
744 \pIIe@bezier@QtoC\@xdim\@ovdx\@clnwd
745 \pIIe@bezier@QtoC\@ydim\@ovdy\@clnht

We call the basic pict2e macro to draw a cubic spline and we finish the con-
ditional statements with which we started these calculations; eventually we close
the group we opened at the beginning and we copy the terminal node information
(position and direction) into the zero-labelled macros that indicate the starting
point of the next arc.

746 \pIIe@curveto\@ovro\@ovri\@clnwd\@clnht\@xdim\@ydim
747 \fi\fi\egroup
748 \CopyVect\@Puno to\@Pzero
749 \CopyVect\@Duno to\@Dzero
750 \ignorespaces}

An example of usage is shown at the left in figure 16 of the user manual
curve2e-manual.pdf file9 created with the code shown in the same page as the
figure.

Notice also that the inflexed line is made with two arcs that meet at the
inflection point; the same is true for the line that resembles a sine wave. The
cusps of the inner border of the green area are obtained with the usual optional
argument already used also with the \Curve recursive macro.

The “circle” inside the square frame is visibly different from a real circle, in
spite of the fact that the maximum deviation from the true circle is just about 6%

9The commands \legenda, \Pall and \Zbox are specifically defined in the preamble of this
document; they must be used within a picture environment. \legenda draws a framed legend
made up of a single (short) math formula; \Pall is just a shorthand to put a sized dot at a
specified position’ \Zbox puts a symbol in math mode a little displaced in the proper direction
relative to a specified position. They are just handy to label certain objects in a picture diagram,
but they are not part of the curve2e package.

51

relative to the radius; a quarter circle obtained with a single parabola is definitely a
poor approximation of a real quarter circle; possibly by splitting each quarter circle
in three or four partial arcs the approximation of a real quarter circle would be
much better. On the right of figure 16 of the user manual it is possible to compare
a “circle” obtained with quadratic arcs with the the internal circle obtained with
cubic arcs; the difference is easily seen even without using measuring instruments.

With quadratic arcs we decided to avoid defining specific macros similar to
\CurveBetween and \CbezierBetween; the first macro would not save any typing
to the operator; furthermore it may be questionable if it was really useful even
with cubic splines; the second macro with quadratic arcs is meaningless, since with
quadratic arcs there is just one control point and there is no choice on its position.

6 Conclusion
I believe that the set of new macros provided by this package can really help users
to draw their diagrams with more agility; it will be the accumulated experience
to decide if this is true.

As a personal experience I found very comfortable to draw ellipses and to
define macros to draw not only such shapes or filled elliptical areas, but also
to create “legends” with coloured backgrounds and borders. But this is just an
application of the functionality implemented in this package. In 2020 I added
to CTAN another specialised package, euclideangeometry.sty with its manual
euclideangeometry-man.pdf that uses the facilities of curve2e to draw com-
plex diagrams that plot curves, and other facilities that solve some geometrical
problems dealing with ellipses.

7 The README.txt file
The following is the text that forms the contents of the README.txt file that
accompanies the package. We found it handy to have it in the documented source,
because in this way certain pieces of information don’t need to be repeated again
and again in different files.

751 The package bundle curve2e is composed of the following files
752
753 curve2e.dtx
754 curve2e-manual.tex
755
756 The derived files are
757
758 curve2e.sty
759 curve2e-v161.sty
760 curve2e.pdf
761 curve2e-manual.pdf
762 README.txt
763

52

764 If you install curve2e without using your TeX system package handler,
765 Compile curve2e.dtx and curve2e-manual.tex two or three times until
766 all labels and citation keys are completely resolved. Then move the
767 primary and derived files as follows:
768
769 Move curve2e.dtx and curve2e-manual.tex to ROOT/source/latex/curve2e/
770 Move curve2e.pdf and curve2e-manual.pdf to ROOT/doc/latex/curve2e/
771 Move curve2e.sty and curve2e-v161.sty to ROOT/tex/latex/curve2e/
772 Move README.txt to ROOT/doc/latex/curve2e/
773
774 curve2e.dtx is the documented TeX source file of the derived files
775 curve2e.sty, curve2e.pdf, curve2e-v161.sty and README.txt.
776
777 You get curve2e.sty, curve2e.pdf, curve2e-v161.sty, and README.txt
778 by running pdflatex on curve2e.dtx.
779
780 The curve2e-manual files contains the user manual; in
781 this way the long preliminary descriptive part of the previous versions
782 curve2e.pdf file has been transferred to shorter dedicated file, and the
783 "normal" user should have enough information to use the package. The
784 curve2e.pdf file, extracted from the .dtx one, contains the code
785 documentation and is intended for the developers, or for the curious
786 advanced users. For what concerns curve2e-v161.sty, it is a previous
787 version of this package; see below why the older version might become
788 necessary to the end user.
789
790 README.txt, this file, contains general information.
791
792 This bundle contains also package curve2e-v161.sty, a roll-back
793 version needed in certain rare cases.
794
795 Curve2e.sty is an extension of the package pict2e.sty which extends the
796 standard picture LaTeX environment according to what Leslie Lamport
797 specified in the second edition of his LaTeX manual (1994).
798
799 This further extension curve2e.sty to pict2e.sty allows to draw lines
800 and vectors with any non integer slope parameters, to draw dashed and
801 dotted lines of any slope, to draw arcs and curved vectors, to draw
802 curves where just the interpolating nodes are specified together with
803 the slopes at such nodes; closed paths of any shape can be filled with
804 color; all coordinates are treated as ordered pairs, i.e. "complex
805 numbers"; coordinates may be expressed also in polar form. Coordinates
806 may be specified with macros, so that editing any drawing is rendered
807 much simpler: any point specified with a macro is modified only once
808 in its macro definition.
809 Some of these features have been incorporated in the 2009 version of
810 pict2e; therefore this package avoids any modification to the original
811 pict2e commands. In any case the version of curve2e is compatible with
812 later versions of pict2e; see below.
813

53

814 Curve2e now accepts polar coordinates in addition to the usual cartesian
815 ones; several macros have been upgraded; a new macro for tracing cubic
816 Bezier splines with their control nodes specified in polar form is
817 available. The same applies to quadratic Bezier splines. The multiput
818 command has been completely modified in a backwards compatible way; the
819 new version allows to manipulate the increment components in a configurable
820 way. A new xmultiput command has been defined that is more configurable
821 than the original one; both commands multiput and xmultiput are backwards
822 compatible with the original picture environment definition.
823
824 Curve2e solves a conflict with package eso-pic.
825
826 This version of curve2e is almost fully compatible with pict2e dated
827 2014/01/12 version 0.2z and later.
828
829 If you specify
830
831 \usepackage[<pict2e options>]{curve2e}
832
833 the package pict2e is automatically invoked with the specified options.
834
835 The -almost fully compatible- phrase is necessary to explain that this
836 version of curve2e uses some "functions" of the LaTeX3 language that were
837 made available to the LaTeX developers by mid October 2018. Should the user
838 have an older or a basic/incomplete installation of the TeX system,
839 such L3 functions might not be available. This is why this
840 package checks the presence of the developer interface; in case
841 such interface is not available it rolls back to the previous version
842 renamed curve2e-v161.sty, which is part of this bundle; this roll-back
843 file name must not be modified in any way. The compatibility mentioned
844 above implies that the user macros remain the same, but their
845 implementation requires the L3 interface. Some macros and environments
846 rely totally on the xfp package functionalities, but legacy documents
847 source files should compile correctly.
848
849 The package has the LPPL status of maintained.
850
851 According to the LPPL licence, you are entitled to modify this package,
852 as long as you fulfil the few conditions set forth by the Licence.
853
854 Nevertheless this package is an extension to the standard LaTeX
855 pict2e (2014) package. Therefore any change must be controlled on the
856 parent package pict2e, so as to avoid redefining or interfering with
857 what is already contained in that package.
858
859 If you prefer sending me your modifications, as long as I will maintain
860 this package, I will possibly include every (documented) suggestion or
861 modification into this package and, of course, I will acknowledge your
862 contribution.
863

54

864 Claudio Beccari
865
866 claudio dot beccari at gmail dot com

8 The roll-back package version curve2e-v161
this is the fall-back version of curve2e-v161.sty to which the main file
curve2e.sty falls back in case the interface package xfp is not available.

867 \NeedsTeXFormat{LaTeX2e}[2016/01/01]
868 \ProvidesPackage{curve2e-v161}%
869 [2019/02/07 v.1.61 Extension package for pict2e]
870
871 \RequirePackage{color}
872 \RequirePackageWithOptions{pict2e}[2014/01/01]
873 \RequirePackage{xparse}
874 \def\TRON{\tracingcommands\tw@ \tracingmacros\tw@}%
875 \def\TROF{\tracingcommands\z@ \tracingmacros\z@}%
876 \ifx\undefined\@tdA \newdimen\@tdA \fi
877 \ifx\undefined\@tdB \newdimen\@tdB \fi
878 \ifx\undefined\@tdC \newdimen\@tdC \fi
879 \ifx\undefined\@tdD \newdimen\@tdD \fi
880 \ifx\undefined\@tdE \newdimen\@tdE \fi
881 \ifx\undefined\@tdF \newdimen\@tdF \fi
882 \ifx\undefined\defaultlinewidth \newdimen\defaultlinewidth \fi
883 \gdef\linethickness#1{\@wholewidth#1\@halfwidth.5\@wholewidth\ignorespaces}%
884 \newcommand\defaultlinethickness[1]{\defaultlinewidth=#1\relax
885 \def\thicklines{\linethickness{\defaultlinewidth}}%
886 \def\thinlines{\linethickness{.5\defaultlinewidth}}%
887 \thinlines\ignorespaces}
888 \def\LIne(#1){{\GetCoord(#1)\@tX\@tY
889 \moveto(0,0)
890 \pIIe@lineto{\@tX\unitlength}{\@tY\unitlength}\strokepath}\ignorespaces}%
891 \def\segment(#1)(#2){\@killglue\polyline(#1)(#2)}%
892 \def\line(#1)#2{\begingroup
893 \@linelen #2\unitlength
894 \ifdim\@linelen<\z@\@badlinearg\else
895 \expandafter\DirOfVect#1to\Dir@line
896 \GetCoord(\Dir@line)\d@mX\d@mY
897 \ifdim\d@mX\p@=\z@\else
898 \DividE\ifdim\d@mX\p@<\z@-\fi\p@ by\d@mX\p@ to\sc@lelen
899 \@linelen=\sc@lelen\@linelen
900 \fi
901 \moveto(0,0)
902 \pIIe@lineto{\d@mX\@linelen}{\d@mY\@linelen}%
903 \strokepath
904 \fi
905 \endgroup\ignorespaces}%
906 \ifx\Dashline\undefined

55

907 \def\Dashline{\@ifstar{\Dashline@@}{\Dashline@}}
908 \def\Dashline@(#1)(#2)#3{%
909 \bgroup
910 \countdef\NumA3254\countdef\NumB3252\relax
911 \GetCoord(#1)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttA
912 \GetCoord(#2)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttB
913 \SubVect\V@ttA from\V@ttB to\V@ttC
914 \ModOfVect\V@ttC to\DlineMod
915 \DivideFN\DlineMod by#3 to\NumD
916 \NumA\expandafter\Integer\NumD.??
917 \ifodd\NumA\else\advance\NumA\@ne\fi
918 \NumB=\NumA \divide\NumB\tw@
919 \DividE\DlineMod\p@ by\NumA\p@ to\D@shMod
920 \DividE\p@ by\NumA\p@ to \@tempa
921 \MultVect\V@ttC by\@tempa,0 to\V@ttB
922 \MultVect\V@ttB by 2,0 to\V@ttC
923 \advance\NumB\@ne
924 \edef\@mpt{\noexpand\egroup
925 \noexpand\multiput(\V@ttA)(\V@ttC){\number\NumB}%
926 {\noexpand\LIne(\V@ttB)}}%
927 \@mpt\ignorespaces}%
928 \let\Dline\Dashline
929
930 \def\Dashline@@(#1)(#2)#3{\put(#1){\Dashline@(0,0)(#2){#3}}}
931 \fi
932 \ifx\Dotline\undefined
933 \def\Dotline{\@ifstar{\Dotline@@}{\Dotline@}}
934 \def\Dotline@(#1)(#2)#3{%
935 \bgroup
936 \countdef\NumA 3254\relax \countdef\NumB 3255\relax
937 \GetCoord(#1)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttA
938 \GetCoord(#2)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttB
939 \SubVect\V@ttA from\V@ttB to\V@ttC
940 \ModOfVect\V@ttC to\DotlineMod
941 \DivideFN\DotlineMod by#3 to\NumD
942 \NumA=\expandafter\Integer\NumD.??
943 \DivVect\V@ttC by\NumA,0 to\V@ttB
944 \advance\NumA\@ne
945 \edef\@mpt{\noexpand\egroup
946 \noexpand\multiput(\V@ttA)(\V@ttB){\number\NumA}%
947 {\noexpand\makebox(0,0){\noexpand\circle*{0.5}}}}%
948 \@mpt\ignorespaces}%
949
950 \def\Dotline@@(#1)(#2)#3{\put(#1){\Dotline@(0,0)(#2){#3}}}
951 \fi
952 \AtBeginDocument{\@ifpackageloaded{eso-pic}{%
953 \renewcommand\LenToUnit[1]{\strip@pt\dimexpr#1*\p@/\unitlength}}{}}
954
955 \def\GetCoord(#1)#2#3{%
956 \expandafter\SplitNod@\expandafter(#1)#2#3\ignorespaces}

56

957 \def\isnot@polar#1:#2!!{\def\@tempOne{#2}\ifx\@tempOne\empty
958 \expandafter\@firstoftwo\else
959 \expandafter\@secondoftwo\fi
960 {\SplitNod@@}{\SplitPolar@@}}
961
962 \def\SplitNod@(#1)#2#3{\isnot@polar#1:!!(#1)#2#3}%
963 \def\SplitNod@@(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}%
964 \def\SplitPolar@@(#1:#2)#3#4{\DirFromAngle#1to\@DirA
965 \ScaleVect\@DirA by#2to\@DirA
966 \expandafter\SplitNod@@\expandafter(\@DirA)#3#4}
967
968 \let\originalput\put
969 \def\put(#1){\bgroup\GetCoord(#1)\@tX\@tY
970 \edef\x{\noexpand\egroup\noexpand\originalput(\@tX,\@tY)}\x}
971
972 \let\originalmultiput\multiput
973 \let\original@multiput\@multiput
974
975 \long\def\@multiput(#1)#2#3{\bgroup\GetCoord(#1)\@mptX\@mptY
976 \edef\x{\noexpand\egroup\noexpand\original@multiput(\@mptX,\@mptY)}%
977 \x{#2}{#3}\ignorespaces}
978
979 \gdef\multiput(#1)#2{\bgroup\GetCoord(#1)\@mptX\@mptY
980 \edef\x{\noexpand\egroup\noexpand\originalmultiput(\@mptX,\@mptY)}\x(}%)
981 \def\vector(#1)#2{%
982 \begingroup
983 \GetCoord(#1)\d@mX\d@mY
984 \@linelen#2\unitlength
985 \ifdim\d@mX\p@=\z@\ifdim\d@mY\p@=\z@\@badlinearg\fi\fi
986 \ifdim\@linelen<\z@ \@linelen=-\@linelen\fi
987 \MakeVectorFrom\d@mX\d@mY to\@Vect
988 \DirOfVect\@Vect to\Dir@Vect
989 \YpartOfVect\Dir@Vect to\@ynum \@ydim=\@ynum\p@
990 \XpartOfVect\Dir@Vect to\@xnum \@xdim=\@xnum\p@
991 \ifdim\d@mX\p@=\z@
992 \else\ifdim\d@mY\p@=\z@
993 \else
994 \DividE\ifdim\@xnum\p@<\z@-\fi\p@ by\@xnum\p@ to\sc@lelen
995 \@linelen=\sc@lelen\@linelen
996 \fi
997 \fi
998 \@tdB=\@linelen
999 \pIIe@concat\@xdim\@ydim{-\@ydim}\@xdim{\@xnum\@linelen}{\@ynum\@linelen}%

1000 \@linelen\z@
1001 \pIIe@vector
1002 \fillpath
1003 \@linelen=\@tdB
1004 \@tdA=\pIIe@FAW\@wholewidth
1005 \@tdA=\pIIe@FAL\@tdA
1006 \advance\@linelen-\@tdA

57

1007 \ifdim\@linelen>\z@
1008 \moveto(0,0)
1009 \pIIe@lineto{\@xnum\@linelen}{\@ynum\@linelen}%
1010 \strokepath\fi
1011 \endgroup}
1012 \def\Vector(#1){{%
1013 \GetCoord(#1)\@tX\@tY
1014 \ifdim\@tX\p@=\z@\vector(\@tX,\@tY){\@tY}
1015 \else
1016 \vector(\@tX,\@tY){\@tX}\fi}}
1017 \def\VECTOR(#1)(#2){\begingroup
1018 \SubVect#1from#2to\@tempa
1019 \expandafter\put\expandafter(#1){\expandafter\Vector\expandafter(\@tempa)}%
1020 \endgroup\ignorespaces}
1021 \let\lp@r(\let\rp@r)
1022 \renewcommand*\polyline[1][\beveljoin]{\p@lylin@[#1]}
1023
1024 \def\p@lylin@[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
1025 \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
1026 \@ifnextchar\lp@r{\p@lyline}{%
1027 \PackageWarning{curve2e}%
1028 {Polylines require at least two vertices!\MessageBreak
1029 Control your polyline specification\MessageBreak}%
1030 \ignorespaces}}
1031
1032 \def\p@lyline(#1){\GetCoord(#1)\d@mX\d@mY
1033 \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
1034 \@ifnextchar\lp@r{\p@lyline}{\strokepath\ignorespaces}}
1035 \providecommand\polygon{}
1036 \RenewDocumentCommand\polygon{s O{\beveljoin} }{\@killglue\begingroup
1037 \IfBooleanTF{#1}{\@tempswatrue}{\@tempswafalse}%
1038 \@polygon[#2]}
1039
1040 \def\@polygon[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
1041 \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
1042 \@ifnextchar\lp@r{\@@polygon}{%
1043 \PackageWarning{curve2e}%
1044 {Polygons require at least two vertices!\MessageBreak
1045 Control your polygon specification\MessageBreak}%
1046 \ignorespaces}}
1047
1048 \def\@@polygon(#1){\GetCoord(#1)\d@mX\d@mY
1049 \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
1050 \@ifnextchar\lp@r{\@@polygon}{\pIIe@closepath
1051 \if@tempswa\pIIe@fillGraph\else\pIIe@strokeGraph\fi
1052 \endgroup
1053 \ignorespaces}}
1054 \def\GraphGrid(#1,#2){\bgroup\textcolor{red}{\linethickness{.1\p@}%
1055 \RoundUp#1modulo10to\@GridWd \RoundUp#2modulo10to\@GridHt
1056 \@tempcnta=\@GridWd \divide\@tempcnta10\relax \advance\@tempcnta\@ne

58

1057 \multiput(0,0)(10,0){\@tempcnta}{\line(0,1){\@GridHt}}%
1058 \@tempcnta=\@GridHt \divide\@tempcnta10\advance\@tempcnta\@ne
1059 \multiput(0,0)(0,10){\@tempcnta}{\line(1,0){\@GridWd}}\thinlines}%
1060 \egroup\ignorespaces}
1061 \def\RoundUp#1modulo#2to#3{\expandafter\@tempcnta\Integer#1.??%
1062 \count254\@tempcnta\divide\count254by#2\relax
1063 \multiply\count254by#2\relax
1064 \count252\@tempcnta\advance\count252-\count254
1065 \ifnum\count252>0\advance\count252-#2\relax
1066 \advance\@tempcnta-\count252\fi\edef#3{\number\@tempcnta}\ignorespaces}%
1067 \def\Integer#1.#2??{#1}%
1068 \ifdefined\dimexpr
1069 \unless\ifdefined\DividE
1070 \def\DividE#1by#2to#3{\bgroup
1071 \dimendef\Num2254\relax \dimendef\Den2252\relax
1072 \dimendef\@DimA 2250
1073 \Num=\p@ \Den=#2\relax
1074 \ifdim\Den=\z@
1075 \edef\x{\noexpand\endgroup\noexpand\def\noexpand#3{\strip@pt\maxdimen}}%
1076 \else
1077 \@DimA=#1\relax
1078 \edef\x{%
1079 \noexpand\egroup\noexpand\def\noexpand#3{%
1080 \strip@pt\dimexpr\@DimA*\Num/\Den\relax}}%
1081 \fi
1082 \x\ignorespaces}%
1083 \fi
1084 \unless\ifdefined\DivideFN
1085 \def\DivideFN#1by#2to#3{\DividE#1\p@ by#2\p@ to{#3}}%
1086 \fi
1087 \unless\ifdefined\MultiplY
1088 \def\MultiplY#1by#2to#3{\bgroup
1089 \dimendef\@DimA 2254 \dimendef\@DimB2255
1090 \@DimA=#1\p@\relax \@DimB=#2\p@\relax
1091 \edef\x{%
1092 \noexpand\egroup\noexpand\def\noexpand#3{%
1093 \strip@pt\dimexpr\@DimA*\@DimB/\p@\relax}}%
1094 \x\ignorespaces}%
1095 \let\MultiplyFN\MultiplY
1096 \fi
1097 \fi
1098
1099 \unless\ifdefined\Numero
1100 \def\Numero#1#2{\bgroup\dimen3254=#2\relax
1101 \edef\x{\noexpand\egroup\noexpand\edef\noexpand#1{%
1102 \strip@pt\dimen3254}}\x\ignorespaces}%
1103 \fi
1104 \def\g@tTanCotanFrom#1to#2and#3{%
1105 \DividE 114.591559\p@ by#1to\X@ \@tdB=\X@\p@
1106 \countdef\I=2546\def\Tan{0}\I=11\relax

59

1107 \@whilenum\I>\z@\do{%
1108 \@tdC=\Tan\p@ \@tdD=\I\@tdB
1109 \advance\@tdD-\@tdC \DividE\p@ by\@tdD to\Tan
1110 \advance\I-2\relax}%
1111 \def#2{\Tan}\DividE\p@ by\Tan\p@ to\Cot \def#3{\Cot}\ignorespaces}%
1112 \def\SinOf#1to#2{\bgroup%
1113 \@tdA=#1\p@%
1114 \ifdim\@tdA>\z@%
1115 \@whiledim\@tdA>180\p@\do{\advance\@tdA -360\p@}%
1116 \else%
1117 \@whiledim\@tdA<-180\p@\do{\advance\@tdA 360\p@}%
1118 \fi \ifdim\@tdA=\z@
1119 \def\@tempA{0}%
1120 \else
1121 \ifdim\@tdA>\z@
1122 \def\Segno{+}%
1123 \else
1124 \def\Segno{-}%
1125 \@tdA=-\@tdA
1126 \fi
1127 \ifdim\@tdA>90\p@
1128 \@tdA=-\@tdA \advance\@tdA 180\p@
1129 \fi
1130 \ifdim\@tdA=90\p@
1131 \def\@tempA{\Segno1}%
1132 \else
1133 \ifdim\@tdA=180\p@
1134 \def\@tempA{0}%
1135 \else
1136 \ifdim\@tdA<\p@
1137 \@tdA=\Segno0.0174533\@tdA
1138 \DividE\@tdA by\p@ to \@tempA%
1139 \else
1140 \g@tTanCotanFrom\@tdA to\T and\Tp
1141 \@tdA=\T\p@ \advance\@tdA \Tp\p@
1142 \DividE \Segno2\p@ by\@tdA to \@tempA%
1143 \fi
1144 \fi
1145 \fi
1146 \fi
1147 \edef\endSinOf{\noexpand\egroup
1148 \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%
1149 \endSinOf}%
1150 \def\CosOf#1to#2{\bgroup%
1151 \@tdA=#1\p@%
1152 \ifdim\@tdA>\z@%
1153 \@whiledim\@tdA>360\p@\do{\advance\@tdA -360\p@}%
1154 \else%
1155 \@whiledim\@tdA<\z@\do{\advance\@tdA 360\p@}%
1156 \fi

60

1157 \ifdim\@tdA>180\p@
1158 \@tdA=-\@tdA \advance\@tdA 360\p@
1159 \fi
1160 \ifdim\@tdA<90\p@
1161 \def\Segno{+}%
1162 \else
1163 \def\Segno{-}%
1164 \@tdA=-\@tdA \advance\@tdA 180\p@
1165 \fi
1166 \ifdim\@tdA=\z@
1167 \def\@tempA{\Segno1}%
1168 \else
1169 \ifdim\@tdA<\p@
1170 \@tdA=0.0174533\@tdA \Numero\@tempA\@tdA
1171 \@tdA=\@tempA\@tdA \@tdA=-.5\@tdA
1172 \advance\@tdA \p@
1173 \DividE\@tdA by\p@ to\@tempA%
1174 \else
1175 \ifdim\@tdA=90\p@
1176 \def\@tempA{0}%
1177 \else
1178 \g@tTanCotanFrom\@tdA to\T and\Tp
1179 \@tdA=\Tp\p@ \advance\@tdA-\T\p@
1180 \@tdB=\Tp\p@ \advance\@tdB\T\p@
1181 \DividE\Segno\@tdA by\@tdB to\@tempA%
1182 \fi
1183 \fi
1184 \fi
1185 \edef\endCosOf{\noexpand\egroup
1186 \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%
1187 \endCosOf}%
1188 \def\TanOf#1to#2{\bgroup%
1189 \@tdA=#1\p@%
1190 \ifdim\@tdA>90\p@%
1191 \@whiledim\@tdA>90\p@\do{\advance\@tdA -180\p@}%
1192 \else%
1193 \@whiledim\@tdA<-90\p@\do{\advance\@tdA 180\p@}%
1194 \fi%
1195 \ifdim\@tdA=\z@%
1196 \def\@tempA{0}%
1197 \else
1198 \ifdim\@tdA>\z@
1199 \def\Segno{+}%
1200 \else
1201 \def\Segno{-}%
1202 \@tdA=-\@tdA
1203 \fi
1204 \ifdim\@tdA=90\p@
1205 \def\@tempA{\Segno16383.99999}%
1206 \else

61

1207 \ifdim\@tdA<\p@
1208 \@tdA=\Segno0.0174533\@tdA
1209 \DividE\@tdA by\p@ to\@tempA%
1210 \else
1211 \g@tTanCotanFrom\@tdA to\T and\Tp
1212 \@tdA\Tp\p@ \advance\@tdA -\T\p@
1213 \DividE\Segno2\p@ by\@tdA to\@tempA%
1214 \fi
1215 \fi
1216 \fi
1217 \edef\endTanOf{\noexpand\egroup
1218 \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%
1219 \endTanOf}%
1220 \def\ArcTanOf#1to#2{\bgroup
1221 \countdef\Inverti 4444\Inverti=0
1222 \def\Segno{}
1223 \edef\@tF{#1}\@tdF=\@tF\p@ \@tdE=57.295778\p@
1224 \@tdD=\ifdim\@tdF<\z@ -\@tdF\def\Segno{-}\else\@tdF\fi
1225 \ifdim\@tdD>\p@
1226 \Inverti=\@ne
1227 \@tdD=\dimexpr\p@*\p@/\@tdD\relax
1228 \fi
1229 \unless\ifdim\@tdD>0.02\p@
1230 \def\@tX{\strip@pt\dimexpr57.295778\@tdD\relax}%
1231 \else
1232 \edef\@tX{45}\relax
1233 \countdef\I 2523 \I=9\relax
1234 \@whilenum\I>0\do{\TanOf\@tX to\@tG
1235 \edef\@tG{\strip@pt\dimexpr\@tG\p@-\@tdD\relax}\relax
1236 \MultiplY\@tG by57.295778to\@tG
1237 \CosOf\@tX to\@tH
1238 \MultiplY\@tH by\@tH to\@tH
1239 \MultiplY\@tH by\@tG to \@tH
1240 \edef\@tX{\strip@pt\dimexpr\@tX\p@ - \@tH\p@\relax}\relax
1241 \advance\I\m@ne}%
1242 \fi
1243 \ifnum\Inverti=\@ne
1244 \edef\@tX{\strip@pt\dimexpr90\p@-\@tX\p@\relax}
1245 \fi
1246 \edef\x{\egroup\noexpand\edef\noexpand#2{\Segno\@tX}}\x\ignorespaces}%
1247 \def\MakeVectorFrom#1#2to#3{\edef#3{#1,#2}\ignorespaces}%
1248 \def\CopyVect#1to#2{\edef#2{#1}\ignorespaces}%
1249 \def\ModOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
1250 \@tempdima=\t@X\p@ \ifdim\@tempdima<\z@ \@tempdima=-\@tempdima\fi
1251 \@tempdimb=\t@Y\p@ \ifdim\@tempdimb<\z@ \@tempdimb=-\@tempdimb\fi
1252 \ifdim\@tempdima=\z@
1253 \ifdim\@tempdimb=\z@
1254 \def\@T{0}\@tempdimc=\z@
1255 \else
1256 \def\@T{0}\@tempdimc=\@tempdimb

62

1257 \fi
1258 \else
1259 \ifdim\@tempdima>\@tempdimb
1260 \DividE\@tempdimb by\@tempdima to\@T
1261 \@tempdimc=\@tempdima
1262 \else
1263 \DividE\@tempdima by\@tempdimb to\@T
1264 \@tempdimc=\@tempdimb
1265 \fi
1266 \fi
1267 \unless\ifdim\@tempdimc=\z@
1268 \unless\ifdim\@T\p@=\z@
1269 \@tempdima=\@T\p@ \@tempdima=\@T\@tempdima
1270 \advance\@tempdima\p@%
1271 \@tempdimb=\p@%
1272 \@tempcnta=5\relax
1273 \@whilenum\@tempcnta>\z@\do{\DividE\@tempdima by\@tempdimb to\@T
1274 \advance\@tempdimb \@T\p@ \@tempdimb=.5\@tempdimb
1275 \advance\@tempcnta\m@ne}%
1276 \@tempdimc=\@T\@tempdimc
1277 \fi
1278 \fi
1279 \Numero#2\@tempdimc
1280 \ignorespaces}%
1281 \def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
1282 \ModOfVect#1to\@tempa
1283 \unless\ifdim\@tempdimc=\z@
1284 \DividE\t@X\p@ by\@tempdimc to\t@X
1285 \DividE\t@Y\p@ by\@tempdimc to\t@Y
1286 \fi
1287 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%
1288 \def\ModAndDirOfVect#1to#2and#3{%
1289 \GetCoord(#1)\t@X\t@Y
1290 \ModOfVect#1to#2%
1291 \ifdim\@tempdimc=\z@\else
1292 \DividE\t@X\p@ by\@tempdimc to\t@X
1293 \DividE\t@Y\p@ by\@tempdimc to\t@Y
1294 \fi
1295 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
1296 \def\DistanceAndDirOfVect#1minus#2to#3and#4{%
1297 \SubVect#2from#1to\@tempa
1298 \ModAndDirOfVect\@tempa to#3and#4\ignorespaces}%
1299 \def\XpartOfVect#1to#2{%
1300 \GetCoord(#1)#2\@tempa\ignorespaces}%
1301 \def\YpartOfVect#1to#2{%
1302 \GetCoord(#1)\@tempa#2\ignorespaces}%
1303 \def\DirFromAngle#1to#2{%
1304 \CosOf#1to\t@X
1305 \SinOf#1to\t@Y
1306 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

63

1307 \def\ArgOfVect#1to#2{\bgroup\GetCoord(#1){\t@X}{\t@Y}%
1308 \def\s@gno{}\def\addflatt@ngle{0}
1309 \ifdim\t@X\p@=\z@
1310 \ifdim\t@Y\p@=\z@
1311 \def\ArcTan{0}%
1312 \else
1313 \def\ArcTan{90}%
1314 \ifdim\t@Y\p@<\z@\def\s@gno{-}\fi
1315 \fi
1316 \else
1317 \ifdim\t@Y\p@=\z@
1318 \ifdim\t@X\p@<\z@
1319 \def\ArcTan{180}%
1320 \else
1321 \def\ArcTan{0}%
1322 \fi
1323 \else
1324 \ifdim\t@X\p@<\z@%
1325 \def\addflatt@ngle{180}%
1326 \edef\t@X{\strip@pt\dimexpr-\t@X\p@}%
1327 \edef\t@Y{\strip@pt\dimexpr-\t@Y\p@}%
1328 \ifdim\t@Y\p@<\z@
1329 \def\s@gno{-}%
1330 \edef\t@Y{-\t@Y}%
1331 \fi
1332 \fi
1333 \DivideFN\t@Y by\t@X to \t@A
1334 \ArcTanOf\t@A to\ArcTan
1335 \fi
1336 \fi
1337 \edef\ArcTan{\unless\ifx\s@gno\empty\s@gno\fi\ArcTan}%
1338 \unless\ifnum\addflatt@ngle=0\relax
1339 \edef\ArcTan{%
1340 \strip@pt\dimexpr\ArcTan\p@\ifx\s@gno\empty-\else+\fi
1341 \addflatt@ngle\p@\relax}%
1342 \fi
1343 \edef\x{\noexpand\egroup\noexpand\edef\noexpand#2{\ArcTan}}%
1344 \x\ignorespaces}
1345 \def\ScaleVect#1by#2to#3{\GetCoord(#1)\t@X\t@Y
1346 \@tempdima=\t@X\p@ \@tempdima=#2\@tempdima\Numero\t@X\@tempdima
1347 \@tempdima=\t@Y\p@ \@tempdima=#2\@tempdima\Numero\t@Y\@tempdima
1348 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
1349 \def\ConjVect#1to#2{\GetCoord(#1)\t@X\t@Y
1350 \@tempdima=-\t@Y\p@\Numero\t@Y\@tempdima
1351 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%
1352 \def\AddVect#1and#2to#3{\GetCoord(#1)\tu@X\tu@Y
1353 \GetCoord(#2)\td@X\td@Y
1354 \@tempdima\tu@X\p@\advance\@tempdima\td@X\p@ \Numero\t@X\@tempdima
1355 \@tempdima\tu@Y\p@\advance\@tempdima\td@Y\p@ \Numero\t@Y\@tempdima
1356 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

64

1357 \def\SubVect#1from#2to#3{\GetCoord(#1)\tu@X\tu@Y
1358 \GetCoord(#2)\td@X\td@Y
1359 \@tempdima\td@X\p@\advance\@tempdima-\tu@X\p@ \Numero\t@X\@tempdima
1360 \@tempdima\td@Y\p@\advance\@tempdima-\tu@Y\p@ \Numero\t@Y\@tempdima
1361 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
1362 \def\MultVect#1by{\@ifstar{\@ConjMultVect#1by}{\@MultVect#1by}}%
1363 \def\@MultVect#1by#2to#3{\GetCoord(#1)\tu@X\tu@Y
1364 \GetCoord(#2)\td@X\td@Y
1365 \@tempdima\tu@X\p@ \@tempdimb\tu@Y\p@
1366 \@tempdimc=\td@X\@tempdima\advance\@tempdimc-\td@Y\@tempdimb
1367 \Numero\t@X\@tempdimc
1368 \@tempdimc=\td@Y\@tempdima\advance\@tempdimc\td@X\@tempdimb
1369 \Numero\t@Y\@tempdimc
1370 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
1371 \def\@ConjMultVect#1by#2to#3{\GetCoord(#1)\tu@X\tu@Y
1372 \GetCoord(#2)\td@X\td@Y \@tempdima\tu@X\p@ \@tempdimb\tu@Y\p@
1373 \@tempdimc=\td@X\@tempdima\advance\@tempdimc+\td@Y\@tempdimb
1374 \Numero\t@X\@tempdimc
1375 \@tempdimc=\td@X\@tempdimb\advance\@tempdimc-\td@Y\@tempdima
1376 \Numero\t@Y\@tempdimc
1377 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}
1378 \def\DivVect#1by#2to#3{\ModAndDirOfVect#2to\@Mod and\@Dir
1379 \DividE\p@ by\@Mod\p@ to\@Mod \ConjVect\@Dir to\@Dir
1380 \ScaleVect#1by\@Mod to\@tempa
1381 \MultVect\@tempa by\@Dir to#3\ignorespaces}%
1382 \def\Arc(#1)(#2)#3{\begingroup
1383 \@tdA=#3\p@
1384 \unless\ifdim\@tdA=\z@
1385 \@Arc(#1)(#2)%
1386 \fi
1387 \endgroup\ignorespaces}%
1388 \def\@Arc(#1)(#2){%
1389 \ifdim\@tdA>\z@
1390 \let\Segno+%
1391 \else
1392 \@tdA=-\@tdA \let\Segno-%
1393 \fi
1394 \Numero\@gradi\@tdA
1395 \ifdim\@tdA>360\p@
1396 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
1397 and gets reduced\MessageBreak%
1398 to the range 0--360 taking the sign into consideration}%
1399 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
1400 \fi
1401 \SubVect#2from#1to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
1402 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
1403 \@@Arc
1404 \strokepath\ignorespaces}%
1405 \def\@@Arc{%
1406 \pIIe@moveto{\@pPunX\unitlength}{\@pPunY\unitlength}%

65

1407 \ifdim\@tdA>180\p@
1408 \advance\@tdA-180\p@
1409 \Numero\@gradi\@tdA
1410 \SubVect\@pPun from\@Cent to\@V
1411 \AddVect\@V and\@Cent to\@sPun
1412 \MultVect\@V by0,-1.3333333to\@V \if\Segno-\ScaleVect\@V by-1to\@V\fi
1413 \AddVect\@pPun and\@V to\@pcPun
1414 \AddVect\@sPun and\@V to\@scPun
1415 \GetCoord(\@pcPun)\@pcPunX\@pcPunY
1416 \GetCoord(\@scPun)\@scPunX\@scPunY
1417 \GetCoord(\@sPun)\@sPunX\@sPunY
1418 \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
1419 {\@scPunX\unitlength}{\@scPunY\unitlength}%
1420 {\@sPunX\unitlength}{\@sPunY\unitlength}%
1421 \CopyVect\@sPun to\@pPun
1422 \fi
1423 \ifdim\@tdA>\z@
1424 \DirFromAngle\@gradi to\@Dir \if\Segno-\ConjVect\@Dir to\@Dir \fi
1425 \SubVect\@Cent from\@pPun to\@V
1426 \MultVect\@V by\@Dir to\@V
1427 \AddVect\@Cent and\@V to\@sPun
1428 \@tdA=.5\@tdA \Numero\@gradi\@tdA
1429 \DirFromAngle\@gradi to\@Phimezzi
1430 \GetCoord(\@Phimezzi)\@cosphimezzi\@sinphimezzi
1431 \@tdB=1.3333333\p@ \@tdB=\@Raggio\@tdB
1432 \@tdC=\p@ \advance\@tdC -\@cosphimezzi\p@ \Numero\@tempa\@tdC
1433 \@tdB=\@tempa\@tdB
1434 \DividE\@tdB by\@sinphimezzi\p@ to\@cZ
1435 \ScaleVect\@Phimezzi by\@cZ to\@Phimezzi
1436 \ConjVect\@Phimezzi to\@mPhimezzi
1437 \if\Segno-%
1438 \let\@tempa\@Phimezzi
1439 \let\@Phimezzi\@mPhimezzi
1440 \let\@mPhimezzi\@tempa
1441 \fi
1442 \SubVect\@sPun from\@pPun to\@V
1443 \DirOfVect\@V to\@V
1444 \MultVect\@Phimezzi by\@V to\@Phimezzi
1445 \AddVect\@sPun and\@Phimezzi to\@scPun
1446 \ScaleVect\@V by-1to\@V
1447 \MultVect\@mPhimezzi by\@V to\@mPhimezzi
1448 \AddVect\@pPun and\@mPhimezzi to\@pcPun
1449 \GetCoord(\@pcPun)\@pcPunX\@pcPunY
1450 \GetCoord(\@scPun)\@scPunX\@scPunY
1451 \GetCoord(\@sPun)\@sPunX\@sPunY
1452 \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
1453 {\@scPunX\unitlength}{\@scPunY\unitlength}%
1454 {\@sPunX\unitlength}{\@sPunY\unitlength}%
1455 \fi}
1456 \def\VectorArc(#1)(#2)#3{\begingroup

66

1457 \@tdA=#3\p@ \ifdim\@tdA=\z@\else
1458 \@VArc(#1)(#2)%
1459 \fi
1460 \endgroup\ignorespaces}%
1461 \def\VectorARC(#1)(#2)#3{\begingroup
1462 \@tdA=#3\p@
1463 \ifdim\@tdA=\z@\else
1464 \@VARC(#1)(#2)%
1465 \fi
1466 \endgroup\ignorespaces}%
1467 \def\@VArc(#1)(#2){%
1468 \ifdim\@tdA>\z@
1469 \let\Segno+%
1470 \else
1471 \@tdA=-\@tdA \let\Segno-%
1472 \fi \Numero\@gradi\@tdA
1473 \ifdim\@tdA>360\p@
1474 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
1475 and gets reduced\MessageBreak%
1476 to the range 0--360 taking the sign into consideration}%
1477 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
1478 \fi
1479 \SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
1480 \@tdE=\pIIe@FAW\@wholewidth \@tdE=\pIIe@FAL\@tdE
1481 \DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
1482 \@tdD=\DeltaGradi\p@
1483 \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
1484 \@tdD=\ifx\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
1485 \DirFromAngle\@tempa to\@Dir
1486 \MultVect\@V by\@Dir to\@sPun
1487 \edef\@tempA{\ifx\Segno-\m@ne\else\@ne\fi}%
1488 \MultVect\@sPun by 0,\@tempA to\@vPun
1489 \DirOfVect\@vPun to\@Dir
1490 \AddVect\@sPun and #1 to \@sPun
1491 \GetCoord(\@sPun)\@tdX\@tdY
1492 \@tdD\ifx\Segno--\fi\DeltaGradi\p@
1493 \@tdD=.5\@tdD \Numero\DeltaGradi\@tdD
1494 \DirFromAngle\DeltaGradi to\@Dird
1495 \MultVect\@Dir by*\@Dird to\@Dir
1496 \GetCoord(\@Dir)\@xnum\@ynum
1497 \put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}%
1498 \@tdE =\ifx\Segno--\fi\DeltaGradi\p@
1499 \advance\@tdA -\@tdE \Numero\@gradi\@tdA
1500 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
1501 \@@Arc
1502 \strokepath\ignorespaces}%
1503 \def\@VARC(#1)(#2){%
1504 \ifdim\@tdA>\z@
1505 \let\Segno+%
1506 \else

67

1507 \@tdA=-\@tdA \let\Segno-%
1508 \fi \Numero\@gradi\@tdA
1509 \ifdim\@tdA>360\p@
1510 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
1511 and gets reduced\MessageBreak%
1512 to the range 0--360 taking the sign into consideration}%
1513 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
1514 \fi
1515 \SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
1516 \@tdE=\pIIe@FAW\@wholewidth \@tdE=0.8\@tdE
1517 \DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
1518 \@tdD=\DeltaGradi\p@ \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
1519 \@tdD=\if\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
1520 \DirFromAngle\@tempa to\@Dir
1521 \MultVect\@V by\@Dir to\@sPun% corrects the end point
1522 \edef\@tempA{\if\Segno--\fi1}%
1523 \MultVect\@sPun by 0,\@tempA to\@vPun
1524 \DirOfVect\@vPun to\@Dir
1525 \AddVect\@sPun and #1 to \@sPun
1526 \GetCoord(\@sPun)\@tdX\@tdY
1527 \@tdD\if\Segno--\fi\DeltaGradi\p@
1528 \@tdD=.5\@tdD \Numero\@tempB\@tdD
1529 \DirFromAngle\@tempB to\@Dird
1530 \MultVect\@Dir by*\@Dird to\@Dir
1531 \GetCoord(\@Dir)\@xnum\@ynum
1532 \put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}% end point arrowt ip
1533 \@tdE =\DeltaGradi\p@
1534 \advance\@tdA -2\@tdE \Numero\@gradi\@tdA
1535 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
1536 \SubVect\@Cent from\@pPun to \@V
1537 \edef\@tempa{\if\Segno-\else-\fi\@ne}%
1538 \MultVect\@V by0,\@tempa to\@vPun
1539 \@tdE\if\Segno--\fi\DeltaGradi\p@
1540 \Numero\@tempB{0.5\@tdE}%
1541 \DirFromAngle\@tempB to\@Dird
1542 \MultVect\@vPun by\@Dird to\@vPun% corrects the starting point
1543 \DirOfVect\@vPun to\@Dir\GetCoord(\@Dir)\@xnum\@ynum
1544 \put(\@pPunX,\@pPunY){\vector(\@xnum,\@ynum){0}}% starting point arrow tip
1545 \edef\@tempa{\if\Segno--\fi\DeltaGradi}%
1546 \DirFromAngle\@tempa to \@Dir
1547 \SubVect\@Cent from\@pPun to\@V
1548 \MultVect\@V by\@Dir to\@V
1549 \AddVect\@Cent and\@V to\@pPun
1550 \GetCoord(\@pPun)\@pPunX\@pPunY
1551 \@@Arc
1552 \strokepath\ignorespaces}%
1553 \def\CurveBetween#1and#2WithDirs#3and#4{%
1554 \StartCurveAt#1WithDir{#3}\relax
1555 \CurveTo#2WithDir{#4}\CurveFinish\ignorespaces}%
1556 \def\StartCurveAt#1WithDir#2{%

68

1557 \begingroup
1558 \GetCoord(#1)\@tempa\@tempb
1559 \CopyVect\@tempa,\@tempb to\@Pzero
1560 \pIIe@moveto{\@tempa\unitlength}{\@tempb\unitlength}%
1561 \GetCoord(#2)\@tempa\@tempb
1562 \CopyVect\@tempa,\@tempb to\@Dzero
1563 \DirOfVect\@Dzero to\@Dzero
1564 \ignorespaces}
1565 \def\ChangeDir<#1>{%
1566 \GetCoord(#1)\@tempa\@tempb
1567 \CopyVect\@tempa,\@tempb to\@Dzero
1568 \DirOfVect\@Dzero to\@Dzero
1569 \ignorespaces}
1570 \def\CurveFinish{\strokepath\endgroup\ignorespaces}%
1571 \def\FillCurve{\fillpath\endgroup\ignorespaces}
1572 \def\CurveEnd{\fillstroke\endgroup\ignorespaces}
1573 \def\CbezierTo#1WithDir#2AndDists#3And#4{%
1574 \GetCoord(#1)\@tX\@tY \MakeVectorFrom\@tX\@tY to\@Puno
1575 \GetCoord(#2)\@tX\@tY \MakeVectorFrom\@tX\@tY to \@Duno
1576 \DirOfVect\@Duno to\@Duno
1577 \ScaleVect\@Dzero by#3to\@Czero \AddVect\@Pzero and\@Czero to\@Czero
1578 \ScaleVect\@Duno by-#4to \@Cuno \AddVect\@Puno and\@Cuno to \@Cuno
1579 \GetCoord(\@Czero)\@XCzero\@YCzero
1580 \GetCoord(\@Cuno)\@XCuno\@YCuno
1581 \GetCoord(\@Puno)\@XPuno\@YPuno
1582 \pIIe@curveto{\@XCzero\unitlength}{\@YCzero\unitlength}%
1583 {\@XCuno\unitlength}{\@YCuno\unitlength}%
1584 {\@XPuno\unitlength}{\@YPuno\unitlength}%
1585 \CopyVect\@Puno to\@Pzero
1586 \CopyVect\@Duno to\@Dzero
1587 \ignorespaces}%
1588 \def\CbezierBetween#1And#2WithDirs#3And#4UsingDists#5And#6{%
1589 \StartCurveAt#1WithDir{#3}\relax
1590 \CbezierTo#2WithDir#4AndDists#5And{#6}\CurveFinish}
1591
1592 \def\@isTension#1;#2!!{\def\@tempA{#1}%
1593 \def\@tempB{#2}\unless\ifx\@tempB\empty\strip@semicolon#2\fi}
1594 \def\strip@semicolon#1;{\def\@tempB{#1}}
1595 \def\CurveTo#1WithDir#2{%
1596 \def\@Tuno{1}\def\@Tzero{1}\relax
1597 \edef\@Puno{#1}\@isTension#2;!!%
1598 \expandafter\DirOfVect\@tempA to\@Duno
1599 \bgroup\unless\ifx\@tempB\empty\GetCoord(\@tempB)\@Tzero\@Tuno\fi
1600 \DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord
1601 \MultVect\@Dzero by*\@DirChord to \@Dpzero
1602 \MultVect\@Duno by*\@DirChord to \@Dpuno
1603 \GetCoord(\@Dpzero)\@DXpzero\@DYpzero
1604 \GetCoord(\@Dpuno)\@DXpuno\@DYpuno
1605 \DivideFN\@Chord by2 to\@semichord
1606 \ifdim\@DXpzero\p@=\z@

69

1607 \@tdA=1.333333\p@
1608 \Numero\@KCzero{\@semichord\@tdA}%
1609 \fi
1610 \ifdim\@DYpzero\p@=\z@
1611 \@tdA=1.333333\p@
1612 \Numero\@Kpzero{\@semichord\@tdA}%
1613 \fi
1614 \unless\ifdim\@DXpzero\p@=\z@
1615 \unless\ifdim\@DYpzero\p@=\z@
1616 \edef\@CosDzero{\ifdim\@DXpzero\p@<\z@ -\fi\@DXpzero}%
1617 \edef\@SinDzero{\ifdim\@DYpzero\p@<\z@ -\fi\@DYpzero}%
1618 \@tdA=\@semichord\p@ \@tdA=1.333333\@tdA
1619 \DividE\@tdA by\@SinDzero\p@ to \@KCzero
1620 \@tdA=\dimexpr(\p@-\@CosDzero\p@)\relax
1621 \DividE\@KCzero\@tdA by\@SinDzero\p@ to \@KCzero
1622 \fi
1623 \fi
1624 \MultiplyFN\@KCzero by \@Tzero to \@KCzero
1625 \ScaleVect\@Dzero by\@KCzero to\@CPzero
1626 \AddVect\@Pzero and\@CPzero to\@CPzero
1627 \ifdim\@DXpuno\p@=\z@
1628 \@tdA=-1.333333\p@
1629 \Numero\@KCuno{\@semichord\@tdA}%
1630 \fi
1631 \ifdim\@DYpuno\p@=\z@
1632 \@tdA=-1.333333\p@
1633 \Numero\@KCuno{\@semichord\@tdA}%
1634 \fi
1635 \unless\ifdim\@DXpuno\p@=\z@
1636 \unless\ifdim\@DYpuno\p@=\z@
1637 \edef\@CosDuno{\ifdim\@DXpuno\p@<\z@ -\fi\@DXpuno}%
1638 \edef\@SinDuno{\ifdim\@DYpuno\p@<\z@ -\fi\@DYpuno}%
1639 \@tdA=\@semichord\p@ \@tdA=-1.333333\@tdA
1640 \DividE\@tdA by \@SinDuno\p@ to \@KCuno
1641 \@tdA=\dimexpr(\p@-\@CosDuno\p@)\relax
1642 \DividE\@KCuno\@tdA by\@SinDuno\p@ to \@KCuno
1643 \fi
1644 \fi
1645 \MultiplyFN\@KCuno by \@Tuno to \@KCuno
1646 \ScaleVect\@Duno by\@KCuno to\@CPuno
1647 \AddVect\@Puno and\@CPuno to\@CPuno
1648 \GetCoord(\@Puno)\@XPuno\@YPuno
1649 \GetCoord(\@CPzero)\@XCPzero\@YCPzero
1650 \GetCoord(\@CPuno)\@XCPuno\@YCPuno
1651 \pIIe@curveto{\@XCPzero\unitlength}{\@YCPzero\unitlength}%
1652 {\@XCPuno\unitlength}{\@YCPuno\unitlength}%
1653 {\@XPuno\unitlength}{\@YPuno\unitlength}\egroup
1654 \CopyVect\@Puno to\@Pzero
1655 \CopyVect\@Duno to\@Dzero
1656 \ignorespaces}%

70

1657 \def\Curve{\@ifstar{\let\fillstroke\fillpath\Curve@}%
1658 {\let\fillstroke\strokepath\Curve@}}
1659 \def\Curve@(#1)<#2>{%
1660 \StartCurveAt#1WithDir{#2}%
1661 \@ifnextchar\lp@r\@Curve{%
1662 \PackageWarning{curve2e}{%
1663 Curve specifications must contain at least two nodes!\MessageBreak
1664 Please, control your Curve specifications\MessageBreak}}}
1665 \def\@Curve(#1)<#2>{%
1666 \CurveTo#1WithDir{#2}%
1667 \@ifnextchar\lp@r\@Curve{%
1668 \@ifnextchar[\@ChangeDir\CurveEnd}}
1669 \def\@ChangeDir[#1]{\ChangeDir<#1>\@Curve}
1670 \def\Qurve{\@ifstar{\let\fillstroke\fillpath\Qurve@}%
1671 {\let\fillstroke\strokepath\Qurve@}}
1672
1673 \def\Qurve@(#1)<#2>{%
1674 \StartCurveAt#1WithDir{#2}%
1675 \@ifnextchar\lp@r\@Qurve{%
1676 \PackageWarning{curve2e}{%
1677 Quadratic curve specifications must contain at least
1678 two nodes!\MessageBreak
1679 Please, control your Qurve specifications\MessageBreak}}}%
1680 \def\@Qurve(#1)<#2>{\QurveTo#1WithDir{#2}%
1681 \@ifnextchar\lp@r\@Qurve{%
1682 \@ifnextchar[\@ChangeQDir\CurveEnd}}%
1683 \def\@ChangeQDir[#1]{\ChangeDir<#1>\@Qurve}%
1684 \def\QurveTo#1WithDir#2{%
1685 \edef\@Puno{#1}\DirOfVect#2to\@Duno\bgroup
1686 \DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord
1687 \MultVect\@Dzero by*\@Duno to \@Scalar
1688 \YpartOfVect\@Scalar to \@YScalar
1689 \ifdim\@YScalar\p@=\z@
1690 \PackageWarning{curve2e}%
1691 {Quadratic Bezier arcs cannot have their starting\MessageBreak
1692 and ending directions parallel or antiparallel with\MessageBreak
1693 each other. This arc is skipped and replaced with
1694 a dotted line.\MessageBreak}%
1695 \Dotline(\@Pzero)(\@Puno){2}\relax
1696 \else
1697 \MultVect\@Dzero by*\@DirChord to \@Dpzero
1698 \MultVect\@Duno by*\@DirChord to \@Dpuno
1699 \GetCoord(\@Dpzero)\@DXpzero\@DYpzero
1700 \GetCoord(\@Dpuno)\@DXpuno\@DYpuno
1701 \MultiplyFN\@DXpzero by\@DXpuno to\@XXD
1702 \MultiplyFN\@DYpzero by\@DYpuno to\@YYD
1703 \unless\ifdim\@YYD\p@<\z@\ifdim\@XXD\p@<\z@
1704 \PackageWarning{curve2e}%
1705 {Quadratic Bezier arcs cannot have inflection points\MessageBreak
1706 Therefore the tangents to the starting and ending arc\MessageBreak

71

1707 points cannot be directed to the same half plane.\MessageBreak
1708 This arc is skipped and replaced by a dotted line\MessageBreak}%
1709 \Dotline(\@Pzero)(\@Puno){2}\fi
1710 \else
1711 \edef\@CDzero{\@DXpzero}\relax
1712 \edef\@SDzero{\@DYpzero}\relax
1713 \edef\@CDuno{\@DXpuno}\relax
1714 \edef\@SDuno{\@DYpuno}\relax
1715 \MultiplyFN\@SDzero by\@CDuno to\@tempA
1716 \MultiplyFN\@SDuno by\@CDzero to\@tempB
1717 \edef\@tempA{\strip@pt\dimexpr\@tempA\p@-\@tempB\p@}\relax
1718 \@tdA=\@SDuno\p@ \@tdB=\@Chord\p@ \@tdC=\@tempA\p@
1719 \edef\@tempC{\strip@pt\dimexpr \@tdA*\@tdB/\@tdC}\relax
1720 \MultiplyFN\@tempC by\@CDzero to \@XC
1721 \MultiplyFN\@tempC by\@SDzero to \@YC
1722 \ModOfVect\@XC,\@YC to\@KC
1723 \ScaleVect\@Dzero by\@KC to\@CP
1724 \AddVect\@Pzero and\@CP to\@CP
1725 \GetCoord(\@Pzero)\@XPzero\@YPzero
1726 \GetCoord(\@Puno)\@XPuno\@YPuno
1727 \GetCoord(\@CP)\@XCP\@YCP
1728 \@ovxx=\@XPzero\unitlength \@ovyy=\@YPzero\unitlength
1729 \@ovdx=\@XCP\unitlength \@ovdy=\@YCP\unitlength
1730 \@xdim=\@XPuno\unitlength \@ydim=\@YPuno\unitlength
1731 \pIIe@bezier@QtoC\@ovxx\@ovdx\@ovro
1732 \pIIe@bezier@QtoC\@ovyy\@ovdy\@ovri
1733 \pIIe@bezier@QtoC\@xdim\@ovdx\@clnwd
1734 \pIIe@bezier@QtoC\@ydim\@ovdy\@clnht
1735 \pIIe@moveto\@ovxx\@ovyy
1736 \pIIe@curveto\@ovro\@ovri\@clnwd\@clnht\@xdim\@ydim
1737 \fi\fi\egroup
1738 \CopyVect\@Puno to\@Pzero
1739 \CopyVect\@Duno to\@Dzero
1740 \ignorespaces}
1741

References
[1] Gäßlein H., Niepraschk R., and Tkadlec J. The pict2e package, 2019, PDF

documentation of pict2e; this package is part of any modern complete dis-
tribution of the TEX system; it may be read by means of the line command
texdoc pict2e. In case of a basic or partial system installation, the package
may be installed by means of the specific facilities of the distribution.

72

	Contents
	1 Introduction
	2 Acknowledgements
	3 Source code
	3.1 Some preliminary extensions to the pict2e package
	3.2 Line thickness macros
	3.3 Improved line and vector macros
	3.4 Dashed and dotted lines
	3.5 Coordinate handling
	3.6 Vectors
	3.7 Polylines and polygons
	3.8 The red service grid

	4 Labelling the graphical elements
	5 Math operations on fractional operands
	5.1 The division macro
	5.2 Trigonometric functions
	5.3 Arcs and curves preliminary information
	5.4 Complex number macros
	5.5 Arcs and curved vectors
	5.5.1 Arcs
	5.5.2 Arc vectors

	5.6 General curves
	5.7 Cubic splines
	5.8 Quadratic splines

	6 Conclusion
	7 The README.txt file
	8 The roll-back package version curve2e-v161
	References

