
How to Package Your LATEX Package

Scott Pakin <scott+dtx@pakin.org>

13 September 2015

Abstract

This tutorial is intended for advanced LATEX 2ε users who want to
learn how to create .ins and .dtx files for distributing their home-
brewed classes and style files.

1 Introduction

Requirements We assume that you already know how to program
in LATEX. That is, you should know how to use \newcommand,
\newenvironment, and preferably a smidgen of TEX. You should also be
familiar with “LATEX 2ε for Class and Package Writers”, which is available
from CTAN (http://www.ctan.org) and comes with most LATEX 2ε distri-
butions in a file called clsguide.dvi. Finally, you should know how to
install packages that are shipped as a .dtx file plus a .ins file.

Terminology A style (.sty) file is primarily a collection of macro and
environment definitions. One or more style files (e.g., a main style file that
\inputs or \RequirePackages multiple helper files) is called a package.
Packages are loaded into a document with \usepackage{〈main .sty file〉}.
In the rest of this document, we use the notation “〈package〉” to represent
the name of your package.

Motivation The important parts of a package are the code, the docu-
mentation of the code, and the user documentation. Using the Doc and
DocStrip programs, it’s possible to combine all three of these into a single,
documented LATEX (.dtx) file. The primary advantage of a .dtx file is that

1

http://www.ctan.org

it enables you to use arbitrary LATEX constructs to comment your code.
Hence, macros, environments, code stanzas, variables, and so forth can be
explained using tables, figures, mathematics, and font changes. Code can
be organized into sections using LATEX’s sectioning commands. Doc even
facilitates generating a unified index that indexes both macro definitions (in
the LATEX code) and macro descriptions (in the user documentation). This
emphasis on writing verbose, nicely typeset comments for code—essentially
treating a program as a book that describes a set of algorithms—is known
as literate programming [2] and has been in use since the early days of TEX.

This tutorial will teach you how to write basic .dtx files and the .ins files
that manipulate them. Although there is much overlap with chapter 14 of
The LATEX Companion [1], this document is structured as a step-by-step
tutorial, while The LATEX Companion is more reference-like. Furthermore,
this tutorial shows how to write a single file that serves as both documen-
tation and driver file, which is a more typical usage of the Doc system than
using separate files.

2 The .ins file

The first step in preparing a package for distribution is to write an installer
(.ins) file. An installer file extracts the code from a .dtx file, uses DocStrip
to strip off the comments and documentation, and outputs a .sty file. The
good news is that a .ins file is typically fairly short and doesn’t change
significantly from one package to another.

.ins files usually start with comments specifying the copyright and license
information:

%%

%% Copyright (C) 〈year〉 by 〈your name〉
%%

%% This file may be distributed and/or modified under the

%% conditions of the LaTeX Project Public License, either

%% version 1.3 of this license or (at your option) any later

%% version. The latest version of this license is in:

%%

%% http://www.latex-project.org/lppl.txt

%%

%% and version 1.3 or later is part of all distributions of

%% LaTeX version 2005/12/01 or later.

%%

2

The LATEX Project Public License (LPPL) is the license under which most
packages—and LATEX itself—are distributed. Of course, you can release your
package under any license you want; the LPPL is merely the most common
license for LATEX packages. The LPPL specifies that a user can do whatever
he wants with your package—including sell it and give you nothing in return.
The only restrictions are that he must give you credit for your work, and
he must change the name of the package if he modifies anything to avoid
versioning confusion.

The next step is to load DocStrip:

\input docstrip.tex

\keepsilent

By default, DocStrip gives a line-by-line account of its activity. These mes-
sages aren’t terribly useful, so most people turn them off:

\keepsilent

\usedir {〈directory〉}

A system administrator can specify the base directory under which all
TEX-related files should be installed, e.g., /usr/share/texmf. (See
“\BaseDirectory” in the DocStrip manual.) The .ins file specifies where
its files should be installed relative to that. The following is typical:

\usedir{tex/latex/〈package〉}

\preamble

〈text〉
\endpreamble

The next step is to specify a preamble, which is a block of commentary that
will be written to the top of every generated file:

3

\preamble

This is a generated file.

Copyright (C) 〈year〉 by 〈your name〉

This file may be distributed and/or modified under the

conditions of the LaTeX Project Public License, either

version 1.3 of this license or (at your option) any later

version. The latest version of this license is in:

http://www.latex-project.org/lppl.txt

and version 1.3 or later is part of all distributions of

LaTeX version 2005/12/01 or later.

\endpreamble

The preceding preamble would cause 〈package〉.sty to begin as follows:

%%

%% This is file ‘〈package〉.sty’,
%% generated with the docstrip utility.

%%

%% The original source files were:

%%

%% 〈package〉.dtx (with options: ‘package’)

%%

%% This is a generated file.

%%

%% Copyright (C) 〈year〉 by 〈your name〉
%%

%% This file may be distributed and/or modified under the

%% conditions of the LaTeX Project Public License, either

%% version 1.3 of this license or (at your option) any later

%% version. The latest version of this license is in:

%%

%% http://www.latex-project.org/lppl.txt

%%

%% and version 1.3 or later is part of all distributions of

%% LaTeX version 2005/12/01 or later.

%%

4

\generate {\file {〈style-file〉} {\from {〈dtx-file〉} {〈tag〉}}}

We now reach the most important part of a .ins file: the specification of
what files to generate from the .dtx file. The following tells DocStrip to
generate 〈package〉.sty from 〈package〉.dtx by extracting only those parts
marked as “package” in the .dtx file. (Marking parts of a .dtx file is
described in Section 3.)

\generate{\file{〈package〉.sty}{\from{〈package〉.dtx}{package}}}

\generate can extract any number of files from a given .dtx file. It can
even extract a single file from multiple .dtx files. See the DocStrip manual
for details.

\Msg {〈text〉}

The next part of a .ins file consists of commands to output a message to
the user, telling him what files need to be installed and reminding him how
to produce the user documentation. The following set of \Msg commands is
typical:

\obeyspaces

\Msg{**}

\Msg{* *}

\Msg{* To finish the installation you have to move the *}

\Msg{* following file into a directory searched by TeX: *}

\Msg{* *}

\Msg{* 〈package〉.sty *}

\Msg{* *}

\Msg{* To produce the documentation run the file *}

\Msg{* 〈package〉.dtx through LaTeX. *}

\Msg{* *}

\Msg{* Happy TeXing! *}

\Msg{* *}

\Msg{**}

Note the use of \obeyspaces to inhibit TEX from collapsing multiple spaces
into one.

\endbatchfile

Finally, we tell DocStrip that we’ve reached the end of the .ins file:

5

\endbatchfile

Appendix A.1 lists a complete, skeleton .ins file. Appendix A.2 is similar
but contains slight modifications intended to produce a class (.cls) file
instead of a style (.sty) file.

3 The .dtx file

A .dtx file contains both the commented source code and the user docu-
mentation for the package. Running a .dtx file through latex typesets the
user documentation, which usually also includes a nicely typeset version of
the commented source code.

Due to some Doc trickery, a .dtx file is actually evaluated twice. The first
time, only a small piece of LATEX driver code is evaluated. The second time,
comments in the .dtx file are evaluated, as if there were no “%” preceding
them. This can lead to a good deal of confusion when writing .dtx files
and occasionally leads to some awkward constructions. Fortunately, once
the basic structure of a .dtx file is in place, filling in the code is fairly
straightforward.

3.1 Prologue

.dtx files generally begin with a copyright and license comment:

% \iffalse meta-comment

%

% Copyright (C) 〈year〉 by 〈your name〉
%

% This file may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either

% version 1.3 of this license or (at your option) any later

% version. The latest version of this license is in:

%

% http://www.latex-project.org/lppl.txt

%

% and version 1.3 or later is part of all distributions of

% LaTeX version 2005/12/01 or later.

%

% \fi

6

The \iffalse and \fi are needed because the second time the .dtx file is
processed, % characters at the beginning of lines are ignored. To prevent the
copyright/license from being evaluated as LATEX code, we have to surround it
with \iffalse. . . \fi. Adding “meta-comment” after “\iffalse” is nothing
more than a convention for indicating that the comment is intended to be
read by a human, not by Doc, DocStrip, or LATEX.

\NeedsTeXFormat {〈format-name〉} [〈release-date〉]
\ProvidesPackage {〈package-name〉} [〈release-info〉]

The next few lines are also surrounded by \iffalse. . . \fi so as not to be
processed by latex on the second pass through the .dtx file. However,
these lines are intended not for a human reader, but for DocStrip (hence, no
“meta-comment”):

% \iffalse

%<package>\NeedsTeXFormat{LaTeX2e}[2005/12/01]

%<package>\ProvidesPackage{〈package〉}
%<package> [〈YYYY 〉/〈MM 〉/〈DD〉 v〈version〉 〈description〉]
%

(We’ll encounter the \fi shortly.)

Remember the \generate line in the .ins file (page 5)? It ended with
the tag “package”. This tells DocStrip to write lines that begin with
“%<package>” to the .sty file, stripping off the “%<package>” in the pro-
cess. Hence, our .sty file will begin with the following:

\NeedsTeXFormat{LaTeX2e}[2005/12/01]

\ProvidesPackage{〈package〉}
[〈YYYY 〉/〈MM 〉/〈DD〉 v〈version〉 〈description〉]

For example:

\NeedsTeXFormat{LaTeX2e}[2005/12/01]

\ProvidesPackage{skeleton}

[2002/03/25 v1.0 .dtx skeleton file]

The \NeedsTeXFormat line ensures that the package won’t run under a
version of LATEX 2ε older than what the package was tested with. The

7

date and version strings in the \ProvidesPackage line are used by Doc
to set the \filedate and \fileversion macros. Note the date format;
YYYY/MM/DD is used throughout LATEX 2ε and should be used in your
packages as well.

\EnableCrossrefs

\CodelineIndex

\RecordChanges

\DocInput {〈filename〉}

Next comes the only part of the .dtx file that isn’t commented out
(i.e., doesn’t begin each line with %):

%<*driver>

\documentclass{ltxdoc}

\usepackage{〈package〉}
\EnableCrossrefs

\CodelineIndex

\RecordChanges

\begin{document}

\DocInput{〈package〉.dtx}
\end{document}

%</driver>

% \fi

The preceding code stanza is what latex evaluates on its first pass through
the .dtx file. We’ll now examine that stanza line-by-line:

1. Putting code between “%<*driver>” and “%</driver>” is a DocStrip
shorthand for prefixing each line with “%<driver>”. This demarcates
the Doc driver code.

2. The \documentclass should almost always be ltxdoc, as that loads
Doc and provides a few useful macros for formatting program docu-
mentation.

3. You should always \usepackage your package. If you don’t, Doc won’t
see the package’s \ProvidesPackage line and won’t know how to set
\filedate and \fileversion (see page 12). This is also where you
should \usepackage any other packages needed to typeset the user
documentation.

8

4. \EnableCrossrefs tells Doc that you want it to construct an in-
dex for your code—normally a good idea. The alternative is
\DisableCrossrefs, which speeds up processing by a negligible
amount.

5. \CodelineIndex tells Doc that the index should refer to program line
numbers instead of page numbers. (The alternative is \PageIndex.)
\CodelineIndex makes index entries easier to find at the expense of
making the index less self-consistent (because descriptions of macros
and environments are always indexed by page number). The index
does, however, begin with a note of explanation.

6. On page 11, we’ll see how to log the changes made in each revision
of the package. \RecordChanges tells Doc that it should keep and
aggregate the log entries.

7. There should be only one command between the \begin{document}

and \end{document}: a \DocInput call with which the .dtx file inputs
itself. This enables a master file to \DocInput multiple files in order
to produce a single document that covers more than one package but
contains a unified index. Master documentation files are described on
page 22.

\OnlyDescription

Another command that sometimes appears in the preamble (i.e., before the
\begin{document}) is \OnlyDescription, which tells Doc to typeset only
the user documentation, not the package code/comments. It’s usually best
to omit \OnlyDescription (or add it commented out). A user can always
add it manually or even enable \OnlyDescription for all .dtx files by
adding the following to his ltxdoc.cfg file:

\AtBeginDocument{\OnlyDescription}

The remainder of this section covers latex’s second pass through the .dtx

file. Consequently, all subsequent examples are prefixed with percent signs.

\CheckSum {〈number〉}

Doc supports a very simplistic form of document checksumming, to help
ensure that a package didn’t get corrupted in transport. Doc merely counts

9

the number of backslashes that occur in the code. If the number matches
the checksum, Doc gives a success message:

* Checksum passed *

Otherwise, it says what the correct checksum should be:

! Package doc Error: Checksum not passed (〈incorrect〉<>〈correct〉).

To specify the checksum in a .dtx file, merely add a \CheckSum statement:

% \CheckSum{〈number〉}

If 〈number〉 is 0, or if the .dtx file lacks a \CheckSum line entirely, then Doc
outputs the following warning message:

* This macro file has no checksum!

* The checksum should be 〈number〉!

During code development it is convenient to specify \CheckSum{0} so you
don’t receive an error message every time you run latex. But don’t forget
to replace “0” with the correct number before releasing your package!

\CharacterTable {〈text〉}

The second mechanism that Doc uses to ensure that a .dtx file is uncor-
rupted is a character table. If you put the following command verbatim into
your .dtx file, then Doc will ensure that no unexpected character translation
took place in transport:1

1The character table is commonly prefixed with double percent signs so that it gets
written to the .sty file. This seems unnecessary and is therefore shown here with single
percent signs.

10

% \CharacterTable

% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z

% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z

% Digits \0\1\2\3\4\5\6\7\8\9

% Exclamation \! Double quote \" Hash (number) \#

% Dollar \$ Percent \% Ampersand \&

% Acute accent \’ Left paren \(Right paren \)

% Asterisk * Plus \+ Comma \,

% Minus \- Point \. Solidus \/

% Colon \: Semicolon \; Less than \<

% Equals \= Greater than \> Question mark \?

% Commercial at \@ Left bracket \[Backslash \\

% Right bracket \] Circumflex \^ Underscore _

% Grave accent \‘ Left brace \{ Vertical bar \|

% Right brace \} Tilde \~}

A success message looks like this:

* Character table correct *

and an error message looks like this:

! Package doc Error: Character table corrupted.

\changes {〈version〉} {〈date〉} {〈description〉}

On page 9 we learned that Doc has a mechanism for recording changes to the
package. The command is “\changes{〈version〉}{〈date〉}{〈description〉}”,
and it’s common to use \changes for the initial version of the package to
log the package’s creation date:

% \changes{v1.0}{2002/03/25}{Initial version}

One nice feature of the \changes command is that it knows whether it was
used internally to a macro/environment definition. As Figure 1 shows, top-
level changes are prefixed with “General:”, and internal changes are prefixed
with the name of the enclosing macro or environment.

11

Change History

v1.0
General: Top-level comment . 1

v1.2j
myMacro: Internal macro comment 5

Figure 1: Sample change history

\GetFileInfo {〈style-file〉}
\filedate

\fileversion

\fileinfo

Next, we tell Doc to parse the \ProvidesPackage command (page 7), call-
ing the three components of \ProvidesPackage’s argument, respectively,
“\filedate”, “\fileversion”, and “\fileinfo”:

% \GetFileInfo{〈package〉.sty}

For instance, the \ProvidesPackage example shown on page 7 would be
parsed as follows:

\filedate ≡ 2002/03/25
\fileversion ≡ v1.0
\fileinfo ≡ .dtx skeleton file

\DoNotIndex {〈macro-name , . . . 〉}

When producing an index, Doc normally indexes every control sequence
(i.e., backslashed word or symbol) in the code. The problem with this level
of automation is that many control sequences are uninteresting from the
perspective of understanding the code. For example, a reader probably
doesn’t want to see every location where \if is used—or \the or \let or
\begin or any of numerous other control sequences.

As its name implies, the \DoNotIndex command gives Doc a list of con-
trol sequences that should not be indexed. \DoNotIndex can be used any
number of times, and it accepts any number of control sequence names per
invocation:

12

% \DoNotIndex{\#,\$,\%,\&,\@,\\,\{,\},\^,_,\~,\ }

% \DoNotIndex{\@ne}

% \DoNotIndex{\advance,\begingroup,\catcode,\closein}

% \DoNotIndex{\closeout,\day,\def,\edef,\else,\empty,\endgroup}

...

3.2 User documentation

We can finally start writing the user documentation. A typical beginning
looks like this:

% \title{The \textsf{〈package〉} package\thanks{This document

% corresponds to \textsf{〈package〉}~\fileversion,
% dated~\filedate.}}

% \author{〈your name〉 \\ \texttt{〈your e-mail address〉}}
%

% \maketitle

The title can certainly be more creative, but note that it’s common for
package names to be typeset with \textsf and for \thanks to be used to
specify the package version and date. This yields one of the advantages
of literate programming: Whenever you change the package version (the
optional second argument to \ProvidesPackage), the user documentation
is updated accordingly. Of course, you still have to ensure manually that
the user documentation accurately describes the updated package.

Write the user documentation as you would any LATEX document, except
that you have to precede each line with a “%”. Note that the ltxdoc docu-
ment class is derived from article, so the top-level sectioning command is
\section, not \chapter.

\DescribeMacro {〈macro〉}
\DescribeEnv {〈environment〉}

Doc provides a couple of commands to help format user documentation.
If you include “\DescribeMacro{〈macro〉}”2 within a paragraph, Doc will
stick “〈macro〉” in the margin to make it easy for a reader to see. Doc will
also add 〈macro〉 to the index and format the corresponding page number to

2“〈macro〉” should include the backslash.

13

indicate that this is where the macro is described (as opposed to the place
in the source code where the macro is defined).

\DescribeEnv is the analogous command for describing an environment.
Both \DescribeMacro and \DescribeEnv can be used multiple times within
a paragraph.

\marg {〈argument〉}
\oarg {〈argument〉}
\parg {〈argument〉}
\meta {〈text〉}

The ltxdoc document class provides three commands to help typeset macro
and environment syntax (Table 1). \marg formats mandatory arguments,
\oarg formats optional arguments, and \parg formats picture arguments.
All three of these utilize \meta to typeset the argument proper. \meta is
also useful on its own. For example, “This needs a \meta{dimen}.” is
typeset as “This needs a 〈dimen〉.”

Table 1: Argument-formatting commands
Command Result

\marg{text} {〈text〉}
\oarg{text} [〈text〉]
\parg{text} (〈text〉)

In addition to those commands, Doc facilitates the typesetting of macro de-
scriptions by automatically loading the shortvrb package. shortvrb lets
you use |. . . | as a convenient shorthand for \verb|. . . |. For instance,
“|\mymacro| \oarg{pos} \marg{width} \marg{text}” is typeset as fol-
lows:

\mymacro [〈pos〉] {〈width〉} {〈text〉}

Like \verb, the |. . . | shorthand does not work within \footnote or other
fragile macros.

14

3.3 Code and commentary

\StopEventually {〈text〉}
\Finale

The package’s source code is delineated by putting it between
\StopEventually and \Finale. Note that \CheckSum (page 9) applies only
to the package’s source code. \StopEventually takes an argument, which
is a block of text to typeset after the code. If \OnlyDescription (page 9)
is specified, then nothing after the \StopEventually will be output—
including text that follows \Finale. \StopEventually’s 〈text〉 parameter is
therefore the mechanism for providing a piece of text that should be output
regardless of whether or not a code listing is typeset. It commonly includes
a bibliography section and/or one or more of the following commands.

\PrintChanges

\PrintIndex

\PrintChanges produces an unnumbered section called “Change History”.
(See Figure 1 on page 12). The Change History section aggregates all of
the \changes commands in the .dtx file into a single list of per-version
modifications. This makes it easy to keep track of what changed from version
to version.

\PrintChanges uses LATEX’s glossary mechanism. Running latex on
〈package〉.dtx produces change-history data in 〈package〉.glo. To pro-
duce the actual change history (〈package〉.gls), the user should run the
makeindex program as follows:

makeindex -s gglo.ist -o 〈package〉.gls 〈package〉.glo

\PrintIndex produces an unnumbered section called “Index”. The index
automatically includes entries for all macros and environments that are used,
defined, or described in the document. All environments are additionally
listed under “environments”. Table 2 illustrates the way that various entries
are formatted. In that table, “27” refers to a page number, and “123”
refers to a line number.3 Note that macro/environment definitions and
uses are included in the index only if the document includes a code listing
(i.e., \OnlyDescription was not specified).

3If \CodelineIndex (page 8) were not used then “123” would refer to a page number.

15

Table 2: Formatting of entries in the index
Item Function Formatting in index

Macro Used \myMacro . 123
Macro Defined \myMacro . 123
Macro Described \myMacro . 27
Environment Defined myEnv (environment) 123
Environment Described myEnv (environment) 27
Other (i.e., an explicit \index) myItem . 27

The default formatting for an explicit \index command uses a roman page
number. This leads to confusion, as roman page numbers otherwise indicate
line numbers in the package source code. The solution is to specify “usage”
formatting to the \index command:

\index{explicit indexing|usage}

Running latex on 〈package〉.dtx produces index data in 〈package〉.idx.
To produce the actual index (〈package〉.ind), the user should run the
makeindex program as follows:

makeindex -s gind.ist -o 〈package〉.ind 〈package〉.idx

A code index is a nice “value added” made possible by literate programming.
It requires virtually no extra effort and greatly helps code maintainers to
find macro definitions and see what other macros a package depends upon.

\begin{macrocode}

〈code〉
\end{macrocode}

Code fragments listed between \begin{macrocode} and \end{macrocode}

are extracted verbatim into the .sty file. When typeset, the code frag-
ments are shown with a running line counter to make it easy to refer to a
specific line. Here are some key points to remember about the macrocode

environment:

1. There must be exactly four spaces between the “%” and the
“\begin{macrocode}” or “\end{macrocode}”. Otherwise, Doc won’t

16

detect the end of the code fragment.4

2. The lines of code within \begin{macrocode}. . . \end{macrocode}
should not begin with “%”. The code gets written exactly as it is
to the .ins file, with no %-stripping.

The following is a sample code fragment. It happens to be a complete macro
definition, but this is not necessary; any fragment of LATEX code can appear
within a macrocode environment.

% \begin{macrocode}

\newcommand{\mymacro}{This is

a \LaTeX{} macro.}

% \end{macrocode}

Doc formats the preceding code fragment as follows:

1 \newcommand{\mymacro}{This is

2 a \LaTeX{} macro.}

Note that line numbers are unique across the entire program (as opposed to
being reset at the top of each page). If \PrintIndex is used in the .dtx file
containing the preceding definition of \mymacro, the index will automatically
include entries for \newcommand, \mymacro, and \LaTeX, unless any of these
are \DoNotIndex’ed.

\begin{macro}{〈macro〉}
...

\end{macro}

\begin{environment}{〈environment〉}
...

\end{environment}

The macro and environment environments are used to delineate a complete
macro or environment definition. macro/environment environments gener-
ally contain one or more macrocode environments interspersed with code

4Trivia: Only the \end{macrocode} needs this precise spacing and then, only for
typesetting the documentation. Nevertheless, it’s good practice to use “% ” for the
\begin{macrocode}, as well.

17

documentation. The following is a more complete version of the macrocode

example shown on the preceding page.

% \begin{macro}{\mymacro}

% We define a trivial macro, |\mymacro|, to illustrate

% the use of the |macro| environment.

% \begin{macrocode}

\newcommand{\mymacro}{This is

a \LaTeX{} macro.}

% \end{macrocode}

% \end{macro}

The typeset version is shown below:

\mymacro We define a trivial macro, \mymacro, to illustrate the
use of the macro environment.
1 \newcommand{\mymacro}{This is

2 a \LaTeX{} macro.}

Doc typesets the macro/environment name in the margin for increased vis-
ibility. Doc also adds the appropriate entries to the index. (See Table 2
on page 16 for examples of how these entries are formatted.) Note that
\begin{macro}. . . \end{macro} is not required to indicate a macro defini-
tion. It can also be used to indicate definitions of LATEX datatypes, such as
counters, lengths, and boxes:

% \begin{macro}{myCounter}

% This is an example of using the |macro| environment to format

% something other than a macro.

% \begin{macrocode}

\newcounter{myCounter}

% \end{macrocode}

% \end{macro}

macro and environment environments can be nested. This capability is
useful not only for macros that define other macros, but also when defining
a group of related datatypes that share a description:

% \begin{macro}{\thingheight}

% \begin{macro}{\thingwidth}

18

% \begin{macro}{\thingdepth}

% These lengths keep track of the dimensions of our |\thing|

% box. (Actually, we’re just trying to show how to nest

% |macro| environments.)

% \begin{macrocode}

\newlength{\thingheight}

\newlength{\thingwidth}

\newlength{\thingdepth}

% \end{macrocode}

% \end{macro}

% \end{macro}

% \end{macro}

Descriptionless macro environments should generally be avoided, as the for-
matting is a little ugly; the macro name appears on its own line, to the left
of an “empty” description, but the code doesn’t start until the next line.

There can be multiple macrocode environments within a \begin{macro}. . .
\end{macro} or \begin{environment}. . . \end{environment} block. This
is the mechanism by which code can be commented internally to a
macro/environment. (It’s considered bad style to use “%” for comments
within a macrocode block.) Here’s an example of the way that a nontrivial
macro might be commented:

% \begin{macro}{\complexMacro}

% Pretend that this is a very complex macro that needs

% to have its various pieces documented.

% \begin{macrocode}

\newcommand{\complexMacro}{%

% \end{macrocode}

% Initialize all of our counters to zero.

% \begin{macrocode}

\setcounter{count@i}{0}%

\setcounter{count@ii}{0}%

\setcounter{count@iii}{0}%

\setcounter{count@iv}{0}%

% \end{macrocode}

% Do some really complicated processing.

% \begin{macrocode}

...

% \end{macrocode}

19

% We’re all finished now.

% \begin{macrocode}

}

% \end{macrocode}

% \end{macro}

Appendix A.3 lists a complete, skeleton .dtx file that encapsulates a .sty

file and its documentation.

Class files The procedure to produce a class file from a .dtx file is far less
straightforward than the procedure to produce a style file. The problem is
that \DocInput relies on the \usepackage{〈package〉} line (more precisely,
the \ProvidesPackage line within 〈package〉.sty) to set the \fileversion

and \filedate macros. However, a class file can’t be loaded with
\usepackage. Nor can we simply load it with \documentclass{〈package〉}
because only one class can be loaded per document and we need that class
to be ltxdoc.

The solution is to use \ProvidesFile to make the file version and date
available to the .dtx file. Appendix A.4 lists a complete, skeleton .dtx

file that encapsulates a .cls file and its documentation. It resembles the
skeleton file shown in Appendix A.3 but has a differently structured header
section.

4 Tips, tricks, and recommendations

• Write lots of good documentation! It really helps others understand
your code and the package as a whole.

• If you believe the LATEX community at large would be interested in
your package then you should upload it to CTAN at http://www.

ctan.org/upload. As a central repository of all things TEX-related,
CTAN makes it easier for others to find your LATEX package than if it
were located on your personal home page.

• When distributing your package, be sure to include a README file de-
scribing what your package does as well as prebuilt documentation,
preferably as a PDF file. Prebuilt documentation saves users the
bother of having to download your package, install it, and build the

20

http://www.ctan.org/upload
http://www.ctan.org/upload

documentation before even knowing what the package is supposed to
do or if it meets their needs.

• Use LATEX’s sectioning commands to organize the code and
clarify its structure (e.g., \subsection{Initialization macros},
\subsection{Helper functions}, \subsection{Exported macros

and environments}, . . .).

• Although commentary really belongs only in the typeset documenta-
tion, it is also possible to write comments that are visible only in the
.sty file, in both the typeset documentation and the .sty file, or only
in the .dtx source. Table 3 shows how to control comment visibility.

Table 3: Comment visibility
Appears Appears
in docs in .sty

Mechanism

N N % ^^A 〈comment〉

N Y % \iffalse

%% 〈comment〉
% \fi

Y N % 〈comment〉

Y Y %% 〈comment〉

• All lines between <*package> and </package>, except those within a
macrocode environment, should begin with “%”. Don’t use any blank
lines; these would get written to the .sty file (and oughtn’t).

• It is good practice for LATEX programs to use “@” within the names
of macros, lengths, counters, etc. that are declared globally, but in-
tended to be used only internally to the package. This prevents
a user from corrupting package state by inadvertently redefining
package internals.5 Another good practice is to prefix all global
names that are internal to the package with the name of the pack-
age (e.g., “\〈package〉@thing” instead of “\@thing” or—even worse—
just “\thing”). This helps avoid inter-package naming conflicts. Fi-
nally, because decimal digits are not normally allowed in macro names,

5Within a LATEX document, “@” is set to category code 12 (“other”), not category
code 11 (“letter”), so the user can’t easily define or use a macro with “@” in its name.

21

it is common to use roman numerals instead, for example: \arg@i,
\arg@ii, \arg@iii, \arg@iv, etc.

• You can use \index in the normal way to index things other than
macros and environments.

• Because macro names can be long, consider using the idxlayout pack-
age to reduce the number of columns in the index. (It provides control
over other aspects of index formatting, as well.)

• If you use Emacs as your text editor, try out swiftex.el’s
doctex-mode, an Emacs mode designed specifically for writing .dtx

files. swiftex.el is available from CTAN.

As a more primitive alternative, look up Emacs’s string-rectangle

and kill-rectangle commands. These help a great deal with adding
and removing a “%” at the beginning of every line in a region.

• Be sure to read “The DocStrip Program” and “The Doc and shortvrb

Packages”, the documentation for DocStrip and Doc, respectively (pro-
vided in .dtx format, of course). These explain how to do more ad-
vanced things with .ins and .dtx files than this tutorial covered.
Some advanced topics include the following:

– Extracting multiple .sty files from a single .dtx file.

– Putting different preambles in different .sty files.

– Extracting something other than a .sty file (e.g., a configuration
file or a Perl script) from a .dtx file.

– Changing the formatting of the typeset documentation.

5 Advanced packaging techniques

This section describes various bits of wizardry that can be accomplished
with Doc and DocStrip. Few packages require these techniques but they are
included here for convenient reference.

5.1 Master documentation files

Doc supports “master” documentation files that typeset multiple .dtx files.
The advantage is that a set of related .dtx files can be typeset with con-
tinuous section numbering and a single, unified index. In fact, the LATEX 2ε

22

source code itself is typeset using a master document (source2e.tex) that
includes all of the myriad .dtx files that comprise LATEX 2ε.

To help produce master documents, the ltxdoc class provides a com-
mand called “\DocInclude”. ltxdoc’s \DocInclude is much like Doc’s
\DocInput—it even uses it internally—but has the following additional fea-
tures.

• \PrintIndex is automatically handled properly.

• Every \DocInclude’d file is given a title page.

• \tableofcontents works as expected. .dtx filenames are used as
“chapter” names.

Note that \DocInclude, unlike \DocInput, assumes a .dtx extension.

Appendix A.5 presents a master-document skeleton that uses \DocInclude
to typeset 〈file1 〉.dtx, 〈file2 〉.dtx, and 〈file3 〉.dtx as a single document.
If you prefer a more manual approach (e.g., if you dislike \DocInclude’s
per-file title pages), you can still use \DocInput. Just make sure to redefine
\PrintIndex to do nothing; otherwise, each file will get its own index.
After all of the .dtx files have been typeset, call the original \PrintIndex
command to print a unified index:

\begin{document}

\let\origPrintIndex=\PrintIndex \let\PrintIndex=\relax

\DocInput{〈file1 〉.dtx}
\DocInput{〈file2 〉.dtx}
\DocInput{〈file3 〉.dtx}
\origPrintIndex

\end{document}

5.2 Single-file package distributions

Although LATEX packages are typically distributed as both a .ins and a
.dtx file, it is possible to distribute a package as a single file. The trick is to
include the entire .ins at the top of the .dtx file, right after the %〈package〉
lines:

23

%<*batchfile>

\begingroup
...

〈Entire contents of the .ins file〉
...

\endgroup

%</batchfile>

Omit the \endbatchfile to allow LATEX to continue on with the
rest of the .dtx file. Also, to avoid the “File 〈sty-file〉 already

exists on the system. Overwrite it? [y/n]” message you can put
“\askforoverwritefalse” before the first \generate command. (This will
automatically overwrite the existing .sty file. Wrapping the \generate

command(s) within “\IfFileExists{〈sty-file〉}{}{. . . }” will suppress the
overwriting.) You should also move the .sty installation instructions to the
end of the .dtx file so they don’t scroll off the user’s screen. You’ll need to
use \typeout as \Msg won’t be defined:

% \Finale

%

% \typeout{**}

% \typeout{*}

% \typeout{* To finish the installation you have to move the}

% \typeout{* following file into a directory searched by TeX:}

% \typeout{*}

% \typeout{* \space\space skeleton.sty}

% \typeout{*}

% \typeout{* Documentation is in skeleton.dvi.}

% \typeout{*}

% \typeout{* Happy TeXing!}

% \typeout{**}

\endinput

5.3 Class and style files with shared versioning information

Some packages contain both a .cls and .sty file. It may be desirable to
have these extracted from the same .ins file and share the same versioning
string. The DocStrip documentation explains how to extract multiple files
from a single \generate call:

24

\generate{\file{〈package〉.cls}{\from{〈package〉.dtx}{class}}
\file{〈package〉.sty}{\from{〈package〉.dtx}{package}}}

Using a single versioning string for both the .cls and .sty files can be
accomplished by changing the following lines in the .dtx file shown in Ap-
pendix A.4:

%<class>\NeedsTeXFormat{LaTeX2e}[2005/12/01]

%<class>\ProvidesClass{〈package〉}
%<*class>

[〈YYYY 〉/〈MM 〉/〈DD〉 v〈version〉 〈brief description〉]
%</class>

The replacement code specifies which lines belong to the class file and which
belong to the style file:

%<class|package>\NeedsTeXFormat{LaTeX2e}[2005/12/01]

%<class>\ProvidesClass{〈package〉}
%<package>\ProvidesPackage{〈package〉}
%<*class|package>

[〈YYYY 〉/〈MM 〉/〈DD〉 v〈version〉 〈brief description〉]
%</class|package>

5.4 Gallery of advanced packaging techniques

See the .dtx gallery on CTAN https://www.ctan.org/tex-archive/

info/dtxgallery for examples of various packaging possibilities, including
the following:

• single-file package distributions (cf. Section 5.2)

• conditional code inclusion (cf. Table 3)

• rearranging code for presentation in the documentation

A Skeleton files

This section contains complete skeletons of the types of files discussed in the
rest of the document. These skeletons can be used as templates for creating
your own packages.

25

https://www.ctan.org/tex-archive/info/dtxgallery
https://www.ctan.org/tex-archive/info/dtxgallery

A.1 A skeleton .ins file to generate a .sty file

%%

%% Copyright (C) 〈year〉 by 〈your name〉
%%

%% This file may be distributed and/or modified under the

%% conditions of the LaTeX Project Public License, either

%% version 1.3 of this license or (at your option) any later

%% version. The latest version of this license is in:

%%

%% http://www.latex-project.org/lppl.txt

%%

%% and version 1.3 or later is part of all distributions of

%% LaTeX version 2005/12/01 or later.

%%

\input docstrip.tex

\keepsilent

\usedir{tex/latex/〈package〉}

\preamble

This is a generated file.

Copyright (C) 〈year〉 by 〈your name〉

This file may be distributed and/or modified under the

conditions of the LaTeX Project Public License, either

version 1.3 of this license or (at your option) any later

version. The latest version of this license is in:

http://www.latex-project.org/lppl.txt

and version 1.3 or later is part of all distributions of

LaTeX version 2005/12/01 or later.

\endpreamble

\generate{\file{〈package〉.sty}{\from{〈package〉.dtx}{package}}}

\Msg{***}

\Msg{*}

\Msg{* To finish the installation you have to move the}

\Msg{* following file into a directory searched by TeX:}

26

\Msg{*}

\Msg{* \space\space 〈package〉.sty}
\Msg{*}

\Msg{* To produce the documentation run the file 〈package〉.dtx}
\Msg{* through LaTeX.}

\Msg{*}

\Msg{* Happy TeXing!}

\Msg{***}

\endbatchfile

A.2 A skeleton .ins file to generate a .cls file

%%

%% Copyright (C) 〈year〉 by 〈your name〉
%%

%% This file may be distributed and/or modified under the

%% conditions of the LaTeX Project Public License, either

%% version 1.3 of this license or (at your option) any later

%% version. The latest version of this license is in:

%%

%% http://www.latex-project.org/lppl.txt

%%

%% and version 1.3 or later is part of all distributions of

%% LaTeX version 2005/12/01 or later.

%%

\input docstrip.tex

\keepsilent

\usedir{tex/latex/〈package〉}

\preamble

This is a generated file.

Copyright (C) 〈year〉 by 〈your name〉

This file may be distributed and/or modified under the

conditions of the LaTeX Project Public License, either

version 1.3 of this license or (at your option) any later

version. The latest version of this license is in:

http://www.latex-project.org/lppl.txt

27

and version 1.3 or later is part of all distributions of

LaTeX version 2005/12/01 or later.

\endpreamble

\generate{\file{〈package〉.cls}{\from{〈package〉.dtx}{class}}}

\Msg{***}

\Msg{*}

\Msg{* To finish the installation you have to move the}

\Msg{* following file into a directory searched by TeX:}

\Msg{*}

\Msg{* \space\space 〈package〉.cls}
\Msg{*}

\Msg{* To produce the documentation run the file 〈class〉.dtx}
\Msg{* through LaTeX.}

\Msg{*}

\Msg{* Happy TeXing!}

\Msg{***}

\endbatchfile

A.3 A skeleton .dtx file to generate a .sty file

% \iffalse meta-comment

%

% Copyright (C) 〈year〉 by 〈your name〉
% -----------------------------------

%

% This file may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either version 1.3

% of this license or (at your option) any later version.

% The latest version of this license is in:

%

% http://www.latex-project.org/lppl.txt

%

% and version 1.3 or later is part of all distributions of LaTeX

% version 2005/12/01 or later.

%

% \fi

%

% \iffalse

28

%<package>\NeedsTeXFormat{LaTeX2e}[2005/12/01]

%<package>\ProvidesPackage{〈package〉}
%<package> [〈YYYY 〉/〈MM 〉/〈DD〉 v〈version〉 〈brief description〉]
%

%<*driver>

\documentclass{ltxdoc}

\usepackage{〈package〉}
\EnableCrossrefs

\CodelineIndex

\RecordChanges

\begin{document}

\DocInput{〈package〉.dtx}
\end{document}

%</driver>

% \fi

%

% \CheckSum{0}

%

% \CharacterTable

% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z

% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z

% Digits \0\1\2\3\4\5\6\7\8\9

% Exclamation \! Double quote \" Hash (number) \#

% Dollar \$ Percent \% Ampersand \&

% Acute accent \’ Left paren \(Right paren \)

% Asterisk * Plus \+ Comma \,

% Minus \- Point \. Solidus \/

% Colon \: Semicolon \; Less than \<

% Equals \= Greater than \> Question mark \?

% Commercial at \@ Left bracket \[Backslash \\

% Right bracket \] Circumflex \^ Underscore _

% Grave accent \‘ Left brace \{ Vertical bar \|

% Right brace \} Tilde \~}

%

%

% \changes{v1.0}{〈YYYY 〉/〈MM 〉/〈DD〉}{Initial version}

%

% \GetFileInfo{〈package〉.sty}
%

% \DoNotIndex{〈list of control sequences〉}
%

% \title{The \textsf{〈package〉} package\thanks{This document

% corresponds to \textsf{〈package〉}~\fileversion,
% dated \filedate.}}

% \author{〈your name〉 \\ \texttt{〈your e-mail address〉}}

29

%

% \maketitle

%

% \begin{abstract}

% Put text here.

% \end{abstract}

%

% \section{Introduction}

%

% Put text here.

%

% \section{Usage}

%

% \DescribeMacro{\YOURMACRO}

% Put description of |\YOURMACRO| here.

%

% \DescribeEnv{YOURENV}

% Put description of |YOURENV| here.

%

% \StopEventually{\PrintIndex}

%

% \section{Implementation}

%

% \begin{macro}{\YOURMACRO}

% Put explanation of |\YOURMACRO|’s implementation here.

% \begin{macrocode}

\newcommand{\YOURMACRO}{}

% \end{macrocode}

% \end{macro}

%

% \begin{environment}{YOURENV}

% Put explanation of |YOURENV|’s implementation here.

% \begin{macrocode}

\newenvironment{YOURENV}{}{}

% \end{macrocode}

% \end{environment}

%

% \Finale

\endinput

A.4 A skeleton .dtx file to generate a .cls file

% \iffalse meta-comment

%

30

% Copyright (C) 〈year〉 by 〈your name〉
% -----------------------------------

%

% This file may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either version 1.3

% of this license or (at your option) any later version.

% The latest version of this license is in:

%

% http://www.latex-project.org/lppl.txt

%

% and version 1.3 or later is part of all distributions of LaTeX

% version 2005/12/01 or later.

%

% \fi

%

% \iffalse

%<*driver>

\ProvidesFile{〈package〉.dtx}
%</driver>

%<class>\NeedsTeXFormat{LaTeX2e}[2005/12/01]

%<class>\ProvidesClass{〈package〉}
%<*class>

[〈YYYY 〉/〈MM 〉/〈DD〉 v〈version〉 〈brief description〉]
%</class>

%

%<*driver>

\documentclass{ltxdoc}

\EnableCrossrefs

\CodelineIndex

\RecordChanges

\begin{document}

\DocInput{〈package〉.dtx}
\end{document}

%</driver>

% \fi

%

% \CheckSum{0}

%

% \CharacterTable

% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z

% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z

% Digits \0\1\2\3\4\5\6\7\8\9

% Exclamation \! Double quote \" Hash (number) \#

% Dollar \$ Percent \% Ampersand \&

% Acute accent \’ Left paren \(Right paren \)

31

% Asterisk * Plus \+ Comma \,

% Minus \- Point \. Solidus \/

% Colon \: Semicolon \; Less than \<

% Equals \= Greater than \> Question mark \?

% Commercial at \@ Left bracket \[Backslash \\

% Right bracket \] Circumflex \^ Underscore _

% Grave accent \‘ Left brace \{ Vertical bar \|

% Right brace \} Tilde \~}

%

%

% \changes{v1.0}{〈YYYY 〉/〈MM 〉/〈DD〉}{Initial version}

%

% \GetFileInfo{〈package〉.dtx}
%

% \DoNotIndex{〈list of control sequences〉}
%

% \title{The \textsf{〈package〉} class\thanks{This document

% corresponds to \textsf{〈package〉}~\fileversion,
% dated \filedate.}}

% \author{〈your name〉 \\ \texttt{〈your e-mail address〉}}
%

% \maketitle

%

% \begin{abstract}

% Put text here.

% \end{abstract}

%

% \section{Introduction}

%

% Put text here.

%

% \section{Usage}

%

% \DescribeMacro{\YOURMACRO}

% Put description of |\YOURMACRO| here.

%

% \DescribeEnv{YOURENV}

% Put description of |YOURENV| here.

%

% \StopEventually{\PrintIndex}

%

% \section{Implementation}

%

% \begin{macro}{\YOURMACRO}

% Put explanation of |\YOURMACRO|’s implementation here.

32

% \begin{macrocode}

\newcommand{\YOURMACRO}{}

% \end{macrocode}

% \end{macro}

%

% \begin{environment}{YOURENV}

% Put explanation of |YOURENV|’s implementation here.

% \begin{macrocode}

\newenvironment{YOURENV}{}{}

% \end{macrocode}

% \end{environment}

%

% \Finale

\endinput

A.5 A skeleton master-document file (.tex)

\documentclass{ltxdoc}

\usepackage{〈file1 〉}
\usepackage{〈file2 〉}
\usepackage{〈file3 〉}

\title{〈title〉}
\author{〈you〉}

\EnableCrossrefs

\CodelineIndex

\RecordChanges

\begin{document}

\maketitle

\begin{abstract}

〈abstract〉
\end{abstract}

\tableofcontents

\DocInclude{〈file1 〉}
\DocInclude{〈file2 〉}
\DocInclude{〈file3 〉}

\end{document}

33

References

[1] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX
Companion. Addison Wesley, Reading, Massachusetts, October 1, 1994.
ISBN 0-201-54199-8.

[2] Donald E. Knuth. Literate programming. The Computer Journal,
27(2):97–111, May 1984. British Computer Society. Available from
http://www.literateprogramming.com/knuthweb.pdf.

34

http://www.literateprogramming.com/knuthweb.pdf

Index

@

in macro names, 21–22

\askforoverwritefalse, 24
\AtBeginDocument, 9
\author, 13

\BaseDirectory, 3

change history, 12, 15
\changes, 11, 15
\chapter, 13
Character table corrupted, 11
\CharacterTable, 10–11
\CheckSum, 9–10, 15
Checksum not passed, 10
checksumming, 9–10
class file, 6, 20, 24, 25
.cls, see class file
\CodelineIndex, 8–9
comments, 2–4, 6–7, 9, 19–21
Comprehensive TEX Archive Net-

work, 1, 20, 22, 25
control sequences, 12
copyright, 2, 6, 7
CTAN, see Comprehensive TEX

Archive Network

date format, 8
\DescribeEnv, 13–14
\DescribeMacro, 13–14
\DisableCrossrefs, 9
Doc, 1, 2, 6–14, 16–18, 22, 23
\DocInclude, 23
\DocInput, 8–9, 20, 23
DocStrip, 1–3, 5, 7, 8, 22, 24
doctex-mode, 22
documentation, prebuilt PDF, 20–21
\documentclass, 8

documented LATEX file, 1, 2, 5–25,
28–33

\DoNotIndex, 12–13, 17
driver code, 8
.dtx, see documented LATEX file

Emacs, 22
\EnableCrossrefs, 8–9
\endbatchfile, 5–6, 24
\endpreamble, 3–4
environment, 17–20

\file, 4–5
\filedate, 8, 11–12, 20
\fileinfo, 11–12
\fileversion, 8, 11–12, 20
\Finale, 15
\footnote, 14
\from, 4–5

\generate, 4–5, 7, 24
\GetFileInfo, 11–12

idxlayout, 22
\iffalse, 7
\IfFileExists, 24
\index, 16, 22
indexing, 2, 9, 12–13, 15–16, 23
\input, 1
.ins, see installer file
installer file, 1–7, 17, 22–28

\keepsilent, 3

LATEX, 1–3, 6–8, 13, 15, 17, 18, 20–24
LATEX Project Public License, 3
license, 2–3, 6, 7
literate programming, 2, 13, 16
LPPL, see LATEX Project Public Li-

cense

35

ltxdoc, 8, 13, 14, 20, 23
ltxdoc.cfg, 9

macro, 17–20
macrocode, 16–21
makeindex, 15, 16
\maketitle, 13
\marg, 14
\meta, 14
meta-comment, 7
\Msg, 5, 24

\NeedsTeXFormat, 7–8
\newcommand, 1
\newenvironment, 1

\oarg, 14
\obeyspaces, 5
\OnlyDescription, 9, 15

package, 1–3, 6–11, 13–16, 20–22, 25
\PageIndex, 9
\parg, 14
preamble, 3
\preamble, 3–4
\PrintChanges, 15
\PrintIndex, 15–17, 23
\ProvidesFile, 20
\ProvidesPackage, 7–8, 12, 13, 20

README file, 20
\RecordChanges, 8–9
\RequirePackage, 1
roman numerals, 22

\section, 13
shortvrb, 14, 22
\StopEventually, 15
.sty, see style file
style file, 1, 2, 4–7, 10, 12, 16, 20–22,

24, 25

swiftex.el, 22

\tableofcontents, 23
\textsf, 13
\thanks, 13
\title, 13
\typeout, 24

\usedir, 3
\usepackage, 1, 8

\verb, 14

36

	Introduction
	The .ins file
	The .dtx file
	Prologue
	User documentation
	Code and commentary

	Tips, tricks, and recommendations
	Advanced packaging techniques
	Master documentation files
	Single-file package distributions
	Class and style files with shared versioning information
	Gallery of advanced packaging techniques

	Skeleton files
	A skeleton .ins file to generate a .sty file
	A skeleton .ins file to generate a .cls file
	A skeleton .dtx file to generate a .sty file
	A skeleton .dtx file to generate a .cls file
	A skeleton master-document file (.tex)

	References
	Index

